An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems

The numerical approximation of boundary value problems by means of a probabilistic representations often has the drawback that the Monte Carlo estimate of the solution is substantially biased due to the presence of the domain boundary. We introduce a scheme, which we have called the leading-term Mon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2016-02, Vol.66 (2), p.577-597
Hauptverfasser: Mancini, Sara, Bernal, Francisco, Acebrón, Juan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue 2
container_start_page 577
container_title Journal of scientific computing
container_volume 66
creator Mancini, Sara
Bernal, Francisco
Acebrón, Juan A.
description The numerical approximation of boundary value problems by means of a probabilistic representations often has the drawback that the Monte Carlo estimate of the solution is substantially biased due to the presence of the domain boundary. We introduce a scheme, which we have called the leading-term Monte Carlo regression, which seeks to remove that bias by replacing a ’cloud’ of Monte Carlo estimates—carried out at different discretization levels—for the usual single Monte Carlo estimate. The practical result of our scheme is an acceleration of the Monte Carlo method. Theoretical analysis of the proposed scheme, confirmed by numerical experiments, shows that the achieved speedup can be well over 100.
doi_str_mv 10.1007/s10915-015-0033-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808094497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808094497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-88d3e7d662e053eb96a626a96a2eecdfac16fbd03979f393306dee4617bdd0763</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVJoJtNfkBvgl5ycTqybH0c3WWTFlIayMdVaO3Rrhdb2kg2JP8-WrZQKPQwDMw87_AOLyFfGNwwAPktMdCsLuBYwHlRfSILVkteSKHZGVmAUnUhK1l9Jhcp7QFAK10uyNh4unaub3v0E22GbYj9tBupC5E2bYsDRjv1fkt_BT8hXdk4BNocDjG89WPeBJ9ocHTaIX0Mw3wc0CnQ72H2nY3v9MUOM9KHGDYDjumSnDs7JLz605fk-Xb9tPpR3P---7lq7ou2rqupUKrjKDshSoSa40YLK0phcysR287Zlgm36YBrqR3XnIPoECvB5KbrQAq-JNenu9nn64xpMmOf8jOD9RjmZJgCBbqqtMzo13_QfZijz-5MqZnirJRSZYqdqDaGlCI6c4j5__huGJhjAOYUgIFj5QBMlTXlSZMy67cY_17-v-gDHQGJBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918312778</pqid></control><display><type>article</type><title>An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Mancini, Sara ; Bernal, Francisco ; Acebrón, Juan A.</creator><creatorcontrib>Mancini, Sara ; Bernal, Francisco ; Acebrón, Juan A.</creatorcontrib><description>The numerical approximation of boundary value problems by means of a probabilistic representations often has the drawback that the Monte Carlo estimate of the solution is substantially biased due to the presence of the domain boundary. We introduce a scheme, which we have called the leading-term Monte Carlo regression, which seeks to remove that bias by replacing a ’cloud’ of Monte Carlo estimates—carried out at different discretization levels—for the usual single Monte Carlo estimate. The practical result of our scheme is an acceleration of the Monte Carlo method. Theoretical analysis of the proposed scheme, confirmed by numerical experiments, shows that the achieved speedup can be well over 100.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-015-0033-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Approximation ; Bias ; Boundary value problems ; Clouds ; Computational Mathematics and Numerical Analysis ; Estimates ; Expected values ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Monte Carlo methods ; Monte Carlo simulation ; Partial differential equations ; Simulation ; Statistical analysis ; Theoretical</subject><ispartof>Journal of scientific computing, 2016-02, Vol.66 (2), p.577-597</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-88d3e7d662e053eb96a626a96a2eecdfac16fbd03979f393306dee4617bdd0763</citedby><cites>FETCH-LOGICAL-c554t-88d3e7d662e053eb96a626a96a2eecdfac16fbd03979f393306dee4617bdd0763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-015-0033-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918312778?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Mancini, Sara</creatorcontrib><creatorcontrib>Bernal, Francisco</creatorcontrib><creatorcontrib>Acebrón, Juan A.</creatorcontrib><title>An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>The numerical approximation of boundary value problems by means of a probabilistic representations often has the drawback that the Monte Carlo estimate of the solution is substantially biased due to the presence of the domain boundary. We introduce a scheme, which we have called the leading-term Monte Carlo regression, which seeks to remove that bias by replacing a ’cloud’ of Monte Carlo estimates—carried out at different discretization levels—for the usual single Monte Carlo estimate. The practical result of our scheme is an acceleration of the Monte Carlo method. Theoretical analysis of the proposed scheme, confirmed by numerical experiments, shows that the achieved speedup can be well over 100.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Bias</subject><subject>Boundary value problems</subject><subject>Clouds</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Estimates</subject><subject>Expected values</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Partial differential equations</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1r3DAQhkVJoJtNfkBvgl5ycTqybH0c3WWTFlIayMdVaO3Rrhdb2kg2JP8-WrZQKPQwDMw87_AOLyFfGNwwAPktMdCsLuBYwHlRfSILVkteSKHZGVmAUnUhK1l9Jhcp7QFAK10uyNh4unaub3v0E22GbYj9tBupC5E2bYsDRjv1fkt_BT8hXdk4BNocDjG89WPeBJ9ocHTaIX0Mw3wc0CnQ72H2nY3v9MUOM9KHGDYDjumSnDs7JLz605fk-Xb9tPpR3P---7lq7ou2rqupUKrjKDshSoSa40YLK0phcysR287Zlgm36YBrqR3XnIPoECvB5KbrQAq-JNenu9nn64xpMmOf8jOD9RjmZJgCBbqqtMzo13_QfZijz-5MqZnirJRSZYqdqDaGlCI6c4j5__huGJhjAOYUgIFj5QBMlTXlSZMy67cY_17-v-gDHQGJBg</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Mancini, Sara</creator><creator>Bernal, Francisco</creator><creator>Acebrón, Juan A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160201</creationdate><title>An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems</title><author>Mancini, Sara ; Bernal, Francisco ; Acebrón, Juan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-88d3e7d662e053eb96a626a96a2eecdfac16fbd03979f393306dee4617bdd0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Bias</topic><topic>Boundary value problems</topic><topic>Clouds</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Estimates</topic><topic>Expected values</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Partial differential equations</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mancini, Sara</creatorcontrib><creatorcontrib>Bernal, Francisco</creatorcontrib><creatorcontrib>Acebrón, Juan A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mancini, Sara</au><au>Bernal, Francisco</au><au>Acebrón, Juan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>66</volume><issue>2</issue><spage>577</spage><epage>597</epage><pages>577-597</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>The numerical approximation of boundary value problems by means of a probabilistic representations often has the drawback that the Monte Carlo estimate of the solution is substantially biased due to the presence of the domain boundary. We introduce a scheme, which we have called the leading-term Monte Carlo regression, which seeks to remove that bias by replacing a ’cloud’ of Monte Carlo estimates—carried out at different discretization levels—for the usual single Monte Carlo estimate. The practical result of our scheme is an acceleration of the Monte Carlo method. Theoretical analysis of the proposed scheme, confirmed by numerical experiments, shows that the achieved speedup can be well over 100.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-015-0033-4</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2016-02, Vol.66 (2), p.577-597
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_miscellaneous_1808094497
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Accuracy
Algorithms
Approximation
Bias
Boundary value problems
Clouds
Computational Mathematics and Numerical Analysis
Estimates
Expected values
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical models
Mathematics
Mathematics and Statistics
Monte Carlo methods
Monte Carlo simulation
Partial differential equations
Simulation
Statistical analysis
Theoretical
title An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Algorithm%20for%20Accelerating%20Monte%20Carlo%20Approximations%20of%20the%20Solution%20to%20Boundary%20Value%20Problems&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Mancini,%20Sara&rft.date=2016-02-01&rft.volume=66&rft.issue=2&rft.spage=577&rft.epage=597&rft.pages=577-597&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-015-0033-4&rft_dat=%3Cproquest_cross%3E1808094497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918312778&rft_id=info:pmid/&rfr_iscdi=true