An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems
The numerical approximation of boundary value problems by means of a probabilistic representations often has the drawback that the Monte Carlo estimate of the solution is substantially biased due to the presence of the domain boundary. We introduce a scheme, which we have called the leading-term Mon...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2016-02, Vol.66 (2), p.577-597 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 597 |
---|---|
container_issue | 2 |
container_start_page | 577 |
container_title | Journal of scientific computing |
container_volume | 66 |
creator | Mancini, Sara Bernal, Francisco Acebrón, Juan A. |
description | The numerical approximation of boundary value problems by means of a probabilistic representations often has the drawback that the Monte Carlo estimate of the solution is substantially biased due to the presence of the domain boundary. We introduce a scheme, which we have called the leading-term Monte Carlo regression, which seeks to remove that bias by replacing a ’cloud’ of Monte Carlo estimates—carried out at different discretization levels—for the usual single Monte Carlo estimate. The practical result of our scheme is an acceleration of the Monte Carlo method. Theoretical analysis of the proposed scheme, confirmed by numerical experiments, shows that the achieved speedup can be well over 100. |
doi_str_mv | 10.1007/s10915-015-0033-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808094497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808094497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-88d3e7d662e053eb96a626a96a2eecdfac16fbd03979f393306dee4617bdd0763</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVJoJtNfkBvgl5ycTqybH0c3WWTFlIayMdVaO3Rrhdb2kg2JP8-WrZQKPQwDMw87_AOLyFfGNwwAPktMdCsLuBYwHlRfSILVkteSKHZGVmAUnUhK1l9Jhcp7QFAK10uyNh4unaub3v0E22GbYj9tBupC5E2bYsDRjv1fkt_BT8hXdk4BNocDjG89WPeBJ9ocHTaIX0Mw3wc0CnQ72H2nY3v9MUOM9KHGDYDjumSnDs7JLz605fk-Xb9tPpR3P---7lq7ou2rqupUKrjKDshSoSa40YLK0phcysR287Zlgm36YBrqR3XnIPoECvB5KbrQAq-JNenu9nn64xpMmOf8jOD9RjmZJgCBbqqtMzo13_QfZijz-5MqZnirJRSZYqdqDaGlCI6c4j5__huGJhjAOYUgIFj5QBMlTXlSZMy67cY_17-v-gDHQGJBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918312778</pqid></control><display><type>article</type><title>An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Mancini, Sara ; Bernal, Francisco ; Acebrón, Juan A.</creator><creatorcontrib>Mancini, Sara ; Bernal, Francisco ; Acebrón, Juan A.</creatorcontrib><description>The numerical approximation of boundary value problems by means of a probabilistic representations often has the drawback that the Monte Carlo estimate of the solution is substantially biased due to the presence of the domain boundary. We introduce a scheme, which we have called the leading-term Monte Carlo regression, which seeks to remove that bias by replacing a ’cloud’ of Monte Carlo estimates—carried out at different discretization levels—for the usual single Monte Carlo estimate. The practical result of our scheme is an acceleration of the Monte Carlo method. Theoretical analysis of the proposed scheme, confirmed by numerical experiments, shows that the achieved speedup can be well over 100.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-015-0033-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Approximation ; Bias ; Boundary value problems ; Clouds ; Computational Mathematics and Numerical Analysis ; Estimates ; Expected values ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Monte Carlo methods ; Monte Carlo simulation ; Partial differential equations ; Simulation ; Statistical analysis ; Theoretical</subject><ispartof>Journal of scientific computing, 2016-02, Vol.66 (2), p.577-597</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-88d3e7d662e053eb96a626a96a2eecdfac16fbd03979f393306dee4617bdd0763</citedby><cites>FETCH-LOGICAL-c554t-88d3e7d662e053eb96a626a96a2eecdfac16fbd03979f393306dee4617bdd0763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-015-0033-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918312778?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Mancini, Sara</creatorcontrib><creatorcontrib>Bernal, Francisco</creatorcontrib><creatorcontrib>Acebrón, Juan A.</creatorcontrib><title>An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>The numerical approximation of boundary value problems by means of a probabilistic representations often has the drawback that the Monte Carlo estimate of the solution is substantially biased due to the presence of the domain boundary. We introduce a scheme, which we have called the leading-term Monte Carlo regression, which seeks to remove that bias by replacing a ’cloud’ of Monte Carlo estimates—carried out at different discretization levels—for the usual single Monte Carlo estimate. The practical result of our scheme is an acceleration of the Monte Carlo method. Theoretical analysis of the proposed scheme, confirmed by numerical experiments, shows that the achieved speedup can be well over 100.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Bias</subject><subject>Boundary value problems</subject><subject>Clouds</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Estimates</subject><subject>Expected values</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Partial differential equations</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1r3DAQhkVJoJtNfkBvgl5ycTqybH0c3WWTFlIayMdVaO3Rrhdb2kg2JP8-WrZQKPQwDMw87_AOLyFfGNwwAPktMdCsLuBYwHlRfSILVkteSKHZGVmAUnUhK1l9Jhcp7QFAK10uyNh4unaub3v0E22GbYj9tBupC5E2bYsDRjv1fkt_BT8hXdk4BNocDjG89WPeBJ9ocHTaIX0Mw3wc0CnQ72H2nY3v9MUOM9KHGDYDjumSnDs7JLz605fk-Xb9tPpR3P---7lq7ou2rqupUKrjKDshSoSa40YLK0phcysR287Zlgm36YBrqR3XnIPoECvB5KbrQAq-JNenu9nn64xpMmOf8jOD9RjmZJgCBbqqtMzo13_QfZijz-5MqZnirJRSZYqdqDaGlCI6c4j5__huGJhjAOYUgIFj5QBMlTXlSZMy67cY_17-v-gDHQGJBg</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Mancini, Sara</creator><creator>Bernal, Francisco</creator><creator>Acebrón, Juan A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160201</creationdate><title>An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems</title><author>Mancini, Sara ; Bernal, Francisco ; Acebrón, Juan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-88d3e7d662e053eb96a626a96a2eecdfac16fbd03979f393306dee4617bdd0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Bias</topic><topic>Boundary value problems</topic><topic>Clouds</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Estimates</topic><topic>Expected values</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Partial differential equations</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mancini, Sara</creatorcontrib><creatorcontrib>Bernal, Francisco</creatorcontrib><creatorcontrib>Acebrón, Juan A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mancini, Sara</au><au>Bernal, Francisco</au><au>Acebrón, Juan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>66</volume><issue>2</issue><spage>577</spage><epage>597</epage><pages>577-597</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>The numerical approximation of boundary value problems by means of a probabilistic representations often has the drawback that the Monte Carlo estimate of the solution is substantially biased due to the presence of the domain boundary. We introduce a scheme, which we have called the leading-term Monte Carlo regression, which seeks to remove that bias by replacing a ’cloud’ of Monte Carlo estimates—carried out at different discretization levels—for the usual single Monte Carlo estimate. The practical result of our scheme is an acceleration of the Monte Carlo method. Theoretical analysis of the proposed scheme, confirmed by numerical experiments, shows that the achieved speedup can be well over 100.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-015-0033-4</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2016-02, Vol.66 (2), p.577-597 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808094497 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Accuracy Algorithms Approximation Bias Boundary value problems Clouds Computational Mathematics and Numerical Analysis Estimates Expected values Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical models Mathematics Mathematics and Statistics Monte Carlo methods Monte Carlo simulation Partial differential equations Simulation Statistical analysis Theoretical |
title | An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Algorithm%20for%20Accelerating%20Monte%20Carlo%20Approximations%20of%20the%20Solution%20to%20Boundary%20Value%20Problems&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Mancini,%20Sara&rft.date=2016-02-01&rft.volume=66&rft.issue=2&rft.spage=577&rft.epage=597&rft.pages=577-597&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-015-0033-4&rft_dat=%3Cproquest_cross%3E1808094497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918312778&rft_id=info:pmid/&rfr_iscdi=true |