The geometry of catastrophic fracture during high temperature processing of silicon

The geometry of fracture associated with the propagation of cracks originating at the edges of (001) oriented, 200 mm diameter silicon wafers has been investigated under two regimes of high temperature processing. Under spike annealing, fracture did not occur on low index planes and all except one w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2015-09, Vol.195 (1-2), p.79-85
Hauptverfasser: Tanner, B. K., Garagorri, J., Gorostegui-Colinas, E., Elizalde, M. R., Bytheway, R., McNally, P. J., Danilewsky, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1-2
container_start_page 79
container_title International journal of fracture
container_volume 195
creator Tanner, B. K.
Garagorri, J.
Gorostegui-Colinas, E.
Elizalde, M. R.
Bytheway, R.
McNally, P. J.
Danilewsky, A. N.
description The geometry of fracture associated with the propagation of cracks originating at the edges of (001) oriented, 200 mm diameter silicon wafers has been investigated under two regimes of high temperature processing. Under spike annealing, fracture did not occur on low index planes and all except one wafer exhibited crack patterns that started initially to run radially, but after a distance of typically 20–30 mm, turned and ran almost tangentially. Wafers subjected to plateau annealing, with a 60 s dwell time at high temperature, predominantly fractured through radial cracks running along ⟨ 110 ⟩ directions. X-ray diffraction imaging reveals substantial slip in all wafers subjected to plateau annealing. We demonstrate using finite element (FE) modelling that the change in fracture geometry is associated with this plastic deformation, which changes the stress distribution during the cooling phase of the rapid thermal annealing cycle. FE simulations without plastic relaxation show that the radial component of the thermal stress distribution is compressive in the centre of the wafer, causing the crack to run tangentially. Simulations incorporating temperature dependent plasticity showed that the equivalent stress becomes tensile when the plateau anneal allows time for significant plastic relaxation, permitting the crack to continue propagating linearly.
doi_str_mv 10.1007/s10704-015-0050-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808090621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808090621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-bccddd83084ecfa747c43631b936de84dc67ed756b99333a585ca49724524013</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOF4ewF3BjZvoyT1ZyuANBlw4-5BJ02mH3kzaxby9rRUEwdWBc77_5_AhdEPgngCoh0RAAcdABAYQgMkJWhGhGKZSsVO0AqYkNpyac3SR0gEAjNJ8hT62Zcj2oWvCEI9ZV2TeDS4NsevLymdFdH4YY8jyMVbtPiurfZkNoelDdN_7PnY-pDTfpmyq6sp37RU6K1ydwvXPvETb56ft-hVv3l_e1o8b7LmkA955n-e5ZqB58IVTXHnOJCM7w2QeNM-9VCFXQu6MYYw5oYV33CjKBeVA2CW6W2qnJz7HkAbbVMmHunZt6MZkiQYNBiSd0ds_6KEbYzs9ZykVRjPOGEwUWSgfu5RiKGwfq8bFoyVgZ8t2sWwny3a2bOdmumRSPxsK8bf5_9AXnRB_Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259834330</pqid></control><display><type>article</type><title>The geometry of catastrophic fracture during high temperature processing of silicon</title><source>Springer Nature - Complete Springer Journals</source><creator>Tanner, B. K. ; Garagorri, J. ; Gorostegui-Colinas, E. ; Elizalde, M. R. ; Bytheway, R. ; McNally, P. J. ; Danilewsky, A. N.</creator><creatorcontrib>Tanner, B. K. ; Garagorri, J. ; Gorostegui-Colinas, E. ; Elizalde, M. R. ; Bytheway, R. ; McNally, P. J. ; Danilewsky, A. N.</creatorcontrib><description>The geometry of fracture associated with the propagation of cracks originating at the edges of (001) oriented, 200 mm diameter silicon wafers has been investigated under two regimes of high temperature processing. Under spike annealing, fracture did not occur on low index planes and all except one wafer exhibited crack patterns that started initially to run radially, but after a distance of typically 20–30 mm, turned and ran almost tangentially. Wafers subjected to plateau annealing, with a 60 s dwell time at high temperature, predominantly fractured through radial cracks running along ⟨ 110 ⟩ directions. X-ray diffraction imaging reveals substantial slip in all wafers subjected to plateau annealing. We demonstrate using finite element (FE) modelling that the change in fracture geometry is associated with this plastic deformation, which changes the stress distribution during the cooling phase of the rapid thermal annealing cycle. FE simulations without plastic relaxation show that the radial component of the thermal stress distribution is compressive in the centre of the wafer, causing the crack to run tangentially. Simulations incorporating temperature dependent plasticity showed that the equivalent stress becomes tensile when the plateau anneal allows time for significant plastic relaxation, permitting the crack to continue propagating linearly.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-015-0050-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Annealing ; Automotive Engineering ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Compressive properties ; Computer simulation ; Crack propagation ; Deformation mechanisms ; Dwell time ; Finite element method ; Fracture mechanics ; Geometry ; High temperature ; Materials Science ; Mechanical Engineering ; Original Paper ; Plastic deformation ; Silicon ; Silicon wafers ; Stress concentration ; Stress distribution ; Stress relaxation ; Temperature dependence ; Thermal stress ; Wafers ; X ray imagery</subject><ispartof>International journal of fracture, 2015-09, Vol.195 (1-2), p.79-85</ispartof><rights>The Author(s) 2015</rights><rights>International Journal of Fracture is a copyright of Springer, (2015). All Rights Reserved. © 2015. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-bccddd83084ecfa747c43631b936de84dc67ed756b99333a585ca49724524013</citedby><cites>FETCH-LOGICAL-c462t-bccddd83084ecfa747c43631b936de84dc67ed756b99333a585ca49724524013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-015-0050-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-015-0050-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tanner, B. K.</creatorcontrib><creatorcontrib>Garagorri, J.</creatorcontrib><creatorcontrib>Gorostegui-Colinas, E.</creatorcontrib><creatorcontrib>Elizalde, M. R.</creatorcontrib><creatorcontrib>Bytheway, R.</creatorcontrib><creatorcontrib>McNally, P. J.</creatorcontrib><creatorcontrib>Danilewsky, A. N.</creatorcontrib><title>The geometry of catastrophic fracture during high temperature processing of silicon</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>The geometry of fracture associated with the propagation of cracks originating at the edges of (001) oriented, 200 mm diameter silicon wafers has been investigated under two regimes of high temperature processing. Under spike annealing, fracture did not occur on low index planes and all except one wafer exhibited crack patterns that started initially to run radially, but after a distance of typically 20–30 mm, turned and ran almost tangentially. Wafers subjected to plateau annealing, with a 60 s dwell time at high temperature, predominantly fractured through radial cracks running along ⟨ 110 ⟩ directions. X-ray diffraction imaging reveals substantial slip in all wafers subjected to plateau annealing. We demonstrate using finite element (FE) modelling that the change in fracture geometry is associated with this plastic deformation, which changes the stress distribution during the cooling phase of the rapid thermal annealing cycle. FE simulations without plastic relaxation show that the radial component of the thermal stress distribution is compressive in the centre of the wafer, causing the crack to run tangentially. Simulations incorporating temperature dependent plasticity showed that the equivalent stress becomes tensile when the plateau anneal allows time for significant plastic relaxation, permitting the crack to continue propagating linearly.</description><subject>Annealing</subject><subject>Automotive Engineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Compressive properties</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Deformation mechanisms</subject><subject>Dwell time</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Geometry</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Plastic deformation</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Stress relaxation</subject><subject>Temperature dependence</subject><subject>Thermal stress</subject><subject>Wafers</subject><subject>X ray imagery</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kMtKxDAUhoMoOF4ewF3BjZvoyT1ZyuANBlw4-5BJ02mH3kzaxby9rRUEwdWBc77_5_AhdEPgngCoh0RAAcdABAYQgMkJWhGhGKZSsVO0AqYkNpyac3SR0gEAjNJ8hT62Zcj2oWvCEI9ZV2TeDS4NsevLymdFdH4YY8jyMVbtPiurfZkNoelDdN_7PnY-pDTfpmyq6sp37RU6K1ydwvXPvETb56ft-hVv3l_e1o8b7LmkA955n-e5ZqB58IVTXHnOJCM7w2QeNM-9VCFXQu6MYYw5oYV33CjKBeVA2CW6W2qnJz7HkAbbVMmHunZt6MZkiQYNBiSd0ds_6KEbYzs9ZykVRjPOGEwUWSgfu5RiKGwfq8bFoyVgZ8t2sWwny3a2bOdmumRSPxsK8bf5_9AXnRB_Pg</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Tanner, B. K.</creator><creator>Garagorri, J.</creator><creator>Gorostegui-Colinas, E.</creator><creator>Elizalde, M. R.</creator><creator>Bytheway, R.</creator><creator>McNally, P. J.</creator><creator>Danilewsky, A. N.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20150901</creationdate><title>The geometry of catastrophic fracture during high temperature processing of silicon</title><author>Tanner, B. K. ; Garagorri, J. ; Gorostegui-Colinas, E. ; Elizalde, M. R. ; Bytheway, R. ; McNally, P. J. ; Danilewsky, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-bccddd83084ecfa747c43631b936de84dc67ed756b99333a585ca49724524013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Annealing</topic><topic>Automotive Engineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Compressive properties</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Deformation mechanisms</topic><topic>Dwell time</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Geometry</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Plastic deformation</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Stress relaxation</topic><topic>Temperature dependence</topic><topic>Thermal stress</topic><topic>Wafers</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanner, B. K.</creatorcontrib><creatorcontrib>Garagorri, J.</creatorcontrib><creatorcontrib>Gorostegui-Colinas, E.</creatorcontrib><creatorcontrib>Elizalde, M. R.</creatorcontrib><creatorcontrib>Bytheway, R.</creatorcontrib><creatorcontrib>McNally, P. J.</creatorcontrib><creatorcontrib>Danilewsky, A. N.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanner, B. K.</au><au>Garagorri, J.</au><au>Gorostegui-Colinas, E.</au><au>Elizalde, M. R.</au><au>Bytheway, R.</au><au>McNally, P. J.</au><au>Danilewsky, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geometry of catastrophic fracture during high temperature processing of silicon</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>195</volume><issue>1-2</issue><spage>79</spage><epage>85</epage><pages>79-85</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>The geometry of fracture associated with the propagation of cracks originating at the edges of (001) oriented, 200 mm diameter silicon wafers has been investigated under two regimes of high temperature processing. Under spike annealing, fracture did not occur on low index planes and all except one wafer exhibited crack patterns that started initially to run radially, but after a distance of typically 20–30 mm, turned and ran almost tangentially. Wafers subjected to plateau annealing, with a 60 s dwell time at high temperature, predominantly fractured through radial cracks running along ⟨ 110 ⟩ directions. X-ray diffraction imaging reveals substantial slip in all wafers subjected to plateau annealing. We demonstrate using finite element (FE) modelling that the change in fracture geometry is associated with this plastic deformation, which changes the stress distribution during the cooling phase of the rapid thermal annealing cycle. FE simulations without plastic relaxation show that the radial component of the thermal stress distribution is compressive in the centre of the wafer, causing the crack to run tangentially. Simulations incorporating temperature dependent plasticity showed that the equivalent stress becomes tensile when the plateau anneal allows time for significant plastic relaxation, permitting the crack to continue propagating linearly.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-015-0050-1</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2015-09, Vol.195 (1-2), p.79-85
issn 0376-9429
1573-2673
language eng
recordid cdi_proquest_miscellaneous_1808090621
source Springer Nature - Complete Springer Journals
subjects Annealing
Automotive Engineering
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Compressive properties
Computer simulation
Crack propagation
Deformation mechanisms
Dwell time
Finite element method
Fracture mechanics
Geometry
High temperature
Materials Science
Mechanical Engineering
Original Paper
Plastic deformation
Silicon
Silicon wafers
Stress concentration
Stress distribution
Stress relaxation
Temperature dependence
Thermal stress
Wafers
X ray imagery
title The geometry of catastrophic fracture during high temperature processing of silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geometry%20of%20catastrophic%20fracture%20during%20high%20temperature%20processing%20of%20silicon&rft.jtitle=International%20journal%20of%20fracture&rft.au=Tanner,%20B.%20K.&rft.date=2015-09-01&rft.volume=195&rft.issue=1-2&rft.spage=79&rft.epage=85&rft.pages=79-85&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-015-0050-1&rft_dat=%3Cproquest_cross%3E1808090621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259834330&rft_id=info:pmid/&rfr_iscdi=true