Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device

Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2015-09, Vol.54 (27), p.8030-8035
Hauptverfasser: Chen, Yue, Fang, Zhao-Xiang, Ren, Yu-Xuan, Gong, Lei, Lu, Rong-De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8035
container_issue 27
container_start_page 8030
container_title Applied Optics
container_volume 54
creator Chen, Yue
Fang, Zhao-Xiang
Ren, Yu-Xuan
Gong, Lei
Lu, Rong-De
description Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.
doi_str_mv 10.1364/AO.54.008030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808086674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1716933693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-acc9665c943085b4b4f48ad6347bc9b637b094f747e7080c22c61e20fbb0114a3</originalsourceid><addsrcrecordid>eNqFkU1PwzAMhiMEYmNw44xy5EBH0ny0PU4TDKRJu8C5SlK3C2qXkWbjQ-K_09LBlYNl2X78SvaL0CUlU8okv52tpoJPCUkJI0doHFMhIkalOEZjQgiLZMbECJ217UtXCZ4lp2gUS06kIHSMvhawAa-CdRusNgU2a-WVCeDt59B0JVZ4C74EE_De-QDvWINq8JsN625UK18BDm7raldZo-ofib619m5X9UhhKxu6QWONd4313nlcwN4aOEcnpapbuDjkCXq-v3uaP0TL1eJxPltGhsU8RMqYTEphMs5IKjTXvOSpKiTjiTaZlizRJONlwhNIuj-YODaSQkxKrQmlXLEJuh50t9697qANeWNbA3WtNuB2bU7Tbi2VMuH_owntPsr6mKCbAe3OalsPZb71tlH-I6ck773JZ6tc8HzwpsOvDso73UDxB_-awb4B7dCKSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1716933693</pqid></control><display><type>article</type><title>Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Chen, Yue ; Fang, Zhao-Xiang ; Ren, Yu-Xuan ; Gong, Lei ; Lu, Rong-De</creator><creatorcontrib>Chen, Yue ; Fang, Zhao-Xiang ; Ren, Yu-Xuan ; Gong, Lei ; Lu, Rong-De</creatorcontrib><description>Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.</description><identifier>ISSN: 0003-6935</identifier><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.54.008030</identifier><identifier>PMID: 26406501</identifier><language>eng</language><publisher>United States</publisher><subject>Charge ; Computer Simulation ; Devices ; Electron beams ; Equipment Design ; Fluid flow ; Holograms ; Holography ; Light ; Microscopy - instrumentation ; Normal Distribution ; Optical Devices ; Optics and Photonics ; Photons ; Physics - methods ; Quantum Theory ; Refractometry - instrumentation ; Refractometry - methods ; Scattering, Radiation ; Topology ; Vortices</subject><ispartof>Applied Optics, 2015-09, Vol.54 (27), p.8030-8035</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-acc9665c943085b4b4f48ad6347bc9b637b094f747e7080c22c61e20fbb0114a3</citedby><cites>FETCH-LOGICAL-c324t-acc9665c943085b4b4f48ad6347bc9b637b094f747e7080c22c61e20fbb0114a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26406501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Fang, Zhao-Xiang</creatorcontrib><creatorcontrib>Ren, Yu-Xuan</creatorcontrib><creatorcontrib>Gong, Lei</creatorcontrib><creatorcontrib>Lu, Rong-De</creatorcontrib><title>Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.</description><subject>Charge</subject><subject>Computer Simulation</subject><subject>Devices</subject><subject>Electron beams</subject><subject>Equipment Design</subject><subject>Fluid flow</subject><subject>Holograms</subject><subject>Holography</subject><subject>Light</subject><subject>Microscopy - instrumentation</subject><subject>Normal Distribution</subject><subject>Optical Devices</subject><subject>Optics and Photonics</subject><subject>Photons</subject><subject>Physics - methods</subject><subject>Quantum Theory</subject><subject>Refractometry - instrumentation</subject><subject>Refractometry - methods</subject><subject>Scattering, Radiation</subject><subject>Topology</subject><subject>Vortices</subject><issn>0003-6935</issn><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1PwzAMhiMEYmNw44xy5EBH0ny0PU4TDKRJu8C5SlK3C2qXkWbjQ-K_09LBlYNl2X78SvaL0CUlU8okv52tpoJPCUkJI0doHFMhIkalOEZjQgiLZMbECJ217UtXCZ4lp2gUS06kIHSMvhawAa-CdRusNgU2a-WVCeDt59B0JVZ4C74EE_De-QDvWINq8JsN625UK18BDm7raldZo-ofib619m5X9UhhKxu6QWONd4313nlcwN4aOEcnpapbuDjkCXq-v3uaP0TL1eJxPltGhsU8RMqYTEphMs5IKjTXvOSpKiTjiTaZlizRJONlwhNIuj-YODaSQkxKrQmlXLEJuh50t9697qANeWNbA3WtNuB2bU7Tbi2VMuH_owntPsr6mKCbAe3OalsPZb71tlH-I6ck773JZ6tc8HzwpsOvDso73UDxB_-awb4B7dCKSQ</recordid><startdate>20150920</startdate><enddate>20150920</enddate><creator>Chen, Yue</creator><creator>Fang, Zhao-Xiang</creator><creator>Ren, Yu-Xuan</creator><creator>Gong, Lei</creator><creator>Lu, Rong-De</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150920</creationdate><title>Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device</title><author>Chen, Yue ; Fang, Zhao-Xiang ; Ren, Yu-Xuan ; Gong, Lei ; Lu, Rong-De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-acc9665c943085b4b4f48ad6347bc9b637b094f747e7080c22c61e20fbb0114a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Charge</topic><topic>Computer Simulation</topic><topic>Devices</topic><topic>Electron beams</topic><topic>Equipment Design</topic><topic>Fluid flow</topic><topic>Holograms</topic><topic>Holography</topic><topic>Light</topic><topic>Microscopy - instrumentation</topic><topic>Normal Distribution</topic><topic>Optical Devices</topic><topic>Optics and Photonics</topic><topic>Photons</topic><topic>Physics - methods</topic><topic>Quantum Theory</topic><topic>Refractometry - instrumentation</topic><topic>Refractometry - methods</topic><topic>Scattering, Radiation</topic><topic>Topology</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Fang, Zhao-Xiang</creatorcontrib><creatorcontrib>Ren, Yu-Xuan</creatorcontrib><creatorcontrib>Gong, Lei</creatorcontrib><creatorcontrib>Lu, Rong-De</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yue</au><au>Fang, Zhao-Xiang</au><au>Ren, Yu-Xuan</au><au>Gong, Lei</au><au>Lu, Rong-De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2015-09-20</date><risdate>2015</risdate><volume>54</volume><issue>27</issue><spage>8030</spage><epage>8035</epage><pages>8030-8035</pages><issn>0003-6935</issn><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.</abstract><cop>United States</cop><pmid>26406501</pmid><doi>10.1364/AO.54.008030</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6935
ispartof Applied Optics, 2015-09, Vol.54 (27), p.8030-8035
issn 0003-6935
1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_1808086674
source MEDLINE; Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Charge
Computer Simulation
Devices
Electron beams
Equipment Design
Fluid flow
Holograms
Holography
Light
Microscopy - instrumentation
Normal Distribution
Optical Devices
Optics and Photonics
Photons
Physics - methods
Quantum Theory
Refractometry - instrumentation
Refractometry - methods
Scattering, Radiation
Topology
Vortices
title Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20characterization%20of%20a%20perfect%20vortex%20beam%20with%20a%20large%20topological%20charge%20through%20a%20digital%20micromirror%20device&rft.jtitle=Applied%20Optics&rft.au=Chen,%20Yue&rft.date=2015-09-20&rft.volume=54&rft.issue=27&rft.spage=8030&rft.epage=8035&rft.pages=8030-8035&rft.issn=0003-6935&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.54.008030&rft_dat=%3Cproquest_cross%3E1716933693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1716933693&rft_id=info:pmid/26406501&rfr_iscdi=true