The wave finite element method for uncertain systems with model uncertainty

The random dynamic response of periodic structures with model uncertainties is here studied. For that purpose, a nonparametric model of random uncertainties is used. The present approach is based on the maximum entropy principle optimization and is developed to identify the response of linear and no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2016-04, Vol.230 (6), p.974-985
Hauptverfasser: Ben Souf, MA, Bareille, O, Ichchou, M, Haddar, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 985
container_issue 6
container_start_page 974
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 230
creator Ben Souf, MA
Bareille, O
Ichchou, M
Haddar, M
description The random dynamic response of periodic structures with model uncertainties is here studied. For that purpose, a nonparametric model of random uncertainties is used. The present approach is based on the maximum entropy principle optimization and is developed to identify the response of linear and nonlinear dynamic systems. This non-parametric probabilistic approach is implemented in combination with the Wave Finite Element. Numerical test cases are used as examples and for validation purpose.
doi_str_mv 10.1177/0954406215617197
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808086456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954406215617197</sage_id><sourcerecordid>1808086456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-6b9b2a6c824fa736dd3aacac36b1987603150c3e85f3cf85632eb7edd32505d33</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwEvXlbznd2jFK1iwUs9h2x21m7Zj5pkLf3vTamgFJw5zOH93mN4CF1Tckep1vekkEIQxahUVNNCn6AJI4JmrMj5KZrs5Wyvn6OLENYkDVNygl6XK8Bb-wW4bvomAoYWOugj7iCuhgrXg8dj78BH2_Q47EKELuBtE1e4Gypof8W4u0RntW0DXP3cKXp_elzOnrPF2_xl9rDIHBcsZqosSmaVy5moreaqqri1zjquSlrkWhFOJXEccllzV-dScQalhoQxSWTF-RTdHnI3fvgcIUTTNcFB29oehjEYmpO0SiTnFN0coeth9H36zlCdC6EKyotEkQPl_BCCh9psfNNZvzOUmH275rjdZMkOlmA_4E_of_w3nPF5BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784469139</pqid></control><display><type>article</type><title>The wave finite element method for uncertain systems with model uncertainty</title><source>Access via SAGE</source><creator>Ben Souf, MA ; Bareille, O ; Ichchou, M ; Haddar, M</creator><creatorcontrib>Ben Souf, MA ; Bareille, O ; Ichchou, M ; Haddar, M</creatorcontrib><description>The random dynamic response of periodic structures with model uncertainties is here studied. For that purpose, a nonparametric model of random uncertainties is used. The present approach is based on the maximum entropy principle optimization and is developed to identify the response of linear and nonlinear dynamic systems. This non-parametric probabilistic approach is implemented in combination with the Wave Finite Element. Numerical test cases are used as examples and for validation purpose.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/0954406215617197</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Dynamic response ; Dynamical systems ; Entropy ; Finite element analysis ; Finite element method ; Mathematical analysis ; Mathematical models ; Maximum entropy ; Nonlinear dynamics ; Optimization ; Uncertainty</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2016-04, Vol.230 (6), p.974-985</ispartof><rights>IMechE 2015</rights><rights>Copyright SAGE PUBLICATIONS, INC. Apr 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-6b9b2a6c824fa736dd3aacac36b1987603150c3e85f3cf85632eb7edd32505d33</citedby><cites>FETCH-LOGICAL-c342t-6b9b2a6c824fa736dd3aacac36b1987603150c3e85f3cf85632eb7edd32505d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954406215617197$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954406215617197$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,782,786,21826,27931,27932,43628,43629</link.rule.ids></links><search><creatorcontrib>Ben Souf, MA</creatorcontrib><creatorcontrib>Bareille, O</creatorcontrib><creatorcontrib>Ichchou, M</creatorcontrib><creatorcontrib>Haddar, M</creatorcontrib><title>The wave finite element method for uncertain systems with model uncertainty</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>The random dynamic response of periodic structures with model uncertainties is here studied. For that purpose, a nonparametric model of random uncertainties is used. The present approach is based on the maximum entropy principle optimization and is developed to identify the response of linear and nonlinear dynamic systems. This non-parametric probabilistic approach is implemented in combination with the Wave Finite Element. Numerical test cases are used as examples and for validation purpose.</description><subject>Dynamic response</subject><subject>Dynamical systems</subject><subject>Entropy</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum entropy</subject><subject>Nonlinear dynamics</subject><subject>Optimization</subject><subject>Uncertainty</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwEvXlbznd2jFK1iwUs9h2x21m7Zj5pkLf3vTamgFJw5zOH93mN4CF1Tckep1vekkEIQxahUVNNCn6AJI4JmrMj5KZrs5Wyvn6OLENYkDVNygl6XK8Bb-wW4bvomAoYWOugj7iCuhgrXg8dj78BH2_Q47EKELuBtE1e4Gypof8W4u0RntW0DXP3cKXp_elzOnrPF2_xl9rDIHBcsZqosSmaVy5moreaqqri1zjquSlrkWhFOJXEccllzV-dScQalhoQxSWTF-RTdHnI3fvgcIUTTNcFB29oehjEYmpO0SiTnFN0coeth9H36zlCdC6EKyotEkQPl_BCCh9psfNNZvzOUmH275rjdZMkOlmA_4E_of_w3nPF5BA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Ben Souf, MA</creator><creator>Bareille, O</creator><creator>Ichchou, M</creator><creator>Haddar, M</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160401</creationdate><title>The wave finite element method for uncertain systems with model uncertainty</title><author>Ben Souf, MA ; Bareille, O ; Ichchou, M ; Haddar, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-6b9b2a6c824fa736dd3aacac36b1987603150c3e85f3cf85632eb7edd32505d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dynamic response</topic><topic>Dynamical systems</topic><topic>Entropy</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum entropy</topic><topic>Nonlinear dynamics</topic><topic>Optimization</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Souf, MA</creatorcontrib><creatorcontrib>Bareille, O</creatorcontrib><creatorcontrib>Ichchou, M</creatorcontrib><creatorcontrib>Haddar, M</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Souf, MA</au><au>Bareille, O</au><au>Ichchou, M</au><au>Haddar, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The wave finite element method for uncertain systems with model uncertainty</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>230</volume><issue>6</issue><spage>974</spage><epage>985</epage><pages>974-985</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>The random dynamic response of periodic structures with model uncertainties is here studied. For that purpose, a nonparametric model of random uncertainties is used. The present approach is based on the maximum entropy principle optimization and is developed to identify the response of linear and nonlinear dynamic systems. This non-parametric probabilistic approach is implemented in combination with the Wave Finite Element. Numerical test cases are used as examples and for validation purpose.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954406215617197</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2016-04, Vol.230 (6), p.974-985
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_miscellaneous_1808086456
source Access via SAGE
subjects Dynamic response
Dynamical systems
Entropy
Finite element analysis
Finite element method
Mathematical analysis
Mathematical models
Maximum entropy
Nonlinear dynamics
Optimization
Uncertainty
title The wave finite element method for uncertain systems with model uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20wave%20finite%20element%20method%20for%20uncertain%20systems%20with%20model%20uncertainty&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Ben%20Souf,%20MA&rft.date=2016-04-01&rft.volume=230&rft.issue=6&rft.spage=974&rft.epage=985&rft.pages=974-985&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/0954406215617197&rft_dat=%3Cproquest_cross%3E1808086456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784469139&rft_id=info:pmid/&rft_sage_id=10.1177_0954406215617197&rfr_iscdi=true