The wave finite element method for uncertain systems with model uncertainty
The random dynamic response of periodic structures with model uncertainties is here studied. For that purpose, a nonparametric model of random uncertainties is used. The present approach is based on the maximum entropy principle optimization and is developed to identify the response of linear and no...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2016-04, Vol.230 (6), p.974-985 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 985 |
---|---|
container_issue | 6 |
container_start_page | 974 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science |
container_volume | 230 |
creator | Ben Souf, MA Bareille, O Ichchou, M Haddar, M |
description | The random dynamic response of periodic structures with model uncertainties is here studied. For that purpose, a nonparametric model of random uncertainties is used. The present approach is based on the maximum entropy principle optimization and is developed to identify the response of linear and nonlinear dynamic systems. This non-parametric probabilistic approach is implemented in combination with the Wave Finite Element. Numerical test cases are used as examples and for validation purpose. |
doi_str_mv | 10.1177/0954406215617197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808086456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954406215617197</sage_id><sourcerecordid>1808086456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-6b9b2a6c824fa736dd3aacac36b1987603150c3e85f3cf85632eb7edd32505d33</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwEvXlbznd2jFK1iwUs9h2x21m7Zj5pkLf3vTamgFJw5zOH93mN4CF1Tckep1vekkEIQxahUVNNCn6AJI4JmrMj5KZrs5Wyvn6OLENYkDVNygl6XK8Bb-wW4bvomAoYWOugj7iCuhgrXg8dj78BH2_Q47EKELuBtE1e4Gypof8W4u0RntW0DXP3cKXp_elzOnrPF2_xl9rDIHBcsZqosSmaVy5moreaqqri1zjquSlrkWhFOJXEccllzV-dScQalhoQxSWTF-RTdHnI3fvgcIUTTNcFB29oehjEYmpO0SiTnFN0coeth9H36zlCdC6EKyotEkQPl_BCCh9psfNNZvzOUmH275rjdZMkOlmA_4E_of_w3nPF5BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784469139</pqid></control><display><type>article</type><title>The wave finite element method for uncertain systems with model uncertainty</title><source>Access via SAGE</source><creator>Ben Souf, MA ; Bareille, O ; Ichchou, M ; Haddar, M</creator><creatorcontrib>Ben Souf, MA ; Bareille, O ; Ichchou, M ; Haddar, M</creatorcontrib><description>The random dynamic response of periodic structures with model uncertainties is here studied. For that purpose, a nonparametric model of random uncertainties is used. The present approach is based on the maximum entropy principle optimization and is developed to identify the response of linear and nonlinear dynamic systems. This non-parametric probabilistic approach is implemented in combination with the Wave Finite Element. Numerical test cases are used as examples and for validation purpose.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/0954406215617197</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Dynamic response ; Dynamical systems ; Entropy ; Finite element analysis ; Finite element method ; Mathematical analysis ; Mathematical models ; Maximum entropy ; Nonlinear dynamics ; Optimization ; Uncertainty</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2016-04, Vol.230 (6), p.974-985</ispartof><rights>IMechE 2015</rights><rights>Copyright SAGE PUBLICATIONS, INC. Apr 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-6b9b2a6c824fa736dd3aacac36b1987603150c3e85f3cf85632eb7edd32505d33</citedby><cites>FETCH-LOGICAL-c342t-6b9b2a6c824fa736dd3aacac36b1987603150c3e85f3cf85632eb7edd32505d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954406215617197$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954406215617197$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,782,786,21826,27931,27932,43628,43629</link.rule.ids></links><search><creatorcontrib>Ben Souf, MA</creatorcontrib><creatorcontrib>Bareille, O</creatorcontrib><creatorcontrib>Ichchou, M</creatorcontrib><creatorcontrib>Haddar, M</creatorcontrib><title>The wave finite element method for uncertain systems with model uncertainty</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>The random dynamic response of periodic structures with model uncertainties is here studied. For that purpose, a nonparametric model of random uncertainties is used. The present approach is based on the maximum entropy principle optimization and is developed to identify the response of linear and nonlinear dynamic systems. This non-parametric probabilistic approach is implemented in combination with the Wave Finite Element. Numerical test cases are used as examples and for validation purpose.</description><subject>Dynamic response</subject><subject>Dynamical systems</subject><subject>Entropy</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum entropy</subject><subject>Nonlinear dynamics</subject><subject>Optimization</subject><subject>Uncertainty</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwEvXlbznd2jFK1iwUs9h2x21m7Zj5pkLf3vTamgFJw5zOH93mN4CF1Tckep1vekkEIQxahUVNNCn6AJI4JmrMj5KZrs5Wyvn6OLENYkDVNygl6XK8Bb-wW4bvomAoYWOugj7iCuhgrXg8dj78BH2_Q47EKELuBtE1e4Gypof8W4u0RntW0DXP3cKXp_elzOnrPF2_xl9rDIHBcsZqosSmaVy5moreaqqri1zjquSlrkWhFOJXEccllzV-dScQalhoQxSWTF-RTdHnI3fvgcIUTTNcFB29oehjEYmpO0SiTnFN0coeth9H36zlCdC6EKyotEkQPl_BCCh9psfNNZvzOUmH275rjdZMkOlmA_4E_of_w3nPF5BA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Ben Souf, MA</creator><creator>Bareille, O</creator><creator>Ichchou, M</creator><creator>Haddar, M</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160401</creationdate><title>The wave finite element method for uncertain systems with model uncertainty</title><author>Ben Souf, MA ; Bareille, O ; Ichchou, M ; Haddar, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-6b9b2a6c824fa736dd3aacac36b1987603150c3e85f3cf85632eb7edd32505d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dynamic response</topic><topic>Dynamical systems</topic><topic>Entropy</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum entropy</topic><topic>Nonlinear dynamics</topic><topic>Optimization</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Souf, MA</creatorcontrib><creatorcontrib>Bareille, O</creatorcontrib><creatorcontrib>Ichchou, M</creatorcontrib><creatorcontrib>Haddar, M</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Souf, MA</au><au>Bareille, O</au><au>Ichchou, M</au><au>Haddar, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The wave finite element method for uncertain systems with model uncertainty</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>230</volume><issue>6</issue><spage>974</spage><epage>985</epage><pages>974-985</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>The random dynamic response of periodic structures with model uncertainties is here studied. For that purpose, a nonparametric model of random uncertainties is used. The present approach is based on the maximum entropy principle optimization and is developed to identify the response of linear and nonlinear dynamic systems. This non-parametric probabilistic approach is implemented in combination with the Wave Finite Element. Numerical test cases are used as examples and for validation purpose.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954406215617197</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4062 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2016-04, Vol.230 (6), p.974-985 |
issn | 0954-4062 2041-2983 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808086456 |
source | Access via SAGE |
subjects | Dynamic response Dynamical systems Entropy Finite element analysis Finite element method Mathematical analysis Mathematical models Maximum entropy Nonlinear dynamics Optimization Uncertainty |
title | The wave finite element method for uncertain systems with model uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20wave%20finite%20element%20method%20for%20uncertain%20systems%20with%20model%20uncertainty&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Ben%20Souf,%20MA&rft.date=2016-04-01&rft.volume=230&rft.issue=6&rft.spage=974&rft.epage=985&rft.pages=974-985&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/0954406215617197&rft_dat=%3Cproquest_cross%3E1808086456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784469139&rft_id=info:pmid/&rft_sage_id=10.1177_0954406215617197&rfr_iscdi=true |