Effect of S53P4 bone substitute on staphylococcal adhesion and biofilm formation on other implant materials in normal and hypoxic conditions

To study the effect of bioactive glass bone substitute granules (S53P4) on bacterial adhesion and biofilm formation on other simultaneously used implant materials and the role of the hypoxic conditions to the adhesion. Bacterial and biofilm formation were studied on materials used both in middle ear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2015-09, Vol.26 (9), p.239-10, Article 239
Hauptverfasser: Pérez-Tanoira, R., García-Pedrazuela, M., Hyyrynen, T., Soininen, A., Aarnisalo, A., Nieminen, Mikko T., Tiainen, V.-M., Konttinen, Y. T., Kinnari, T. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 9
container_start_page 239
container_title Journal of materials science. Materials in medicine
container_volume 26
creator Pérez-Tanoira, R.
García-Pedrazuela, M.
Hyyrynen, T.
Soininen, A.
Aarnisalo, A.
Nieminen, Mikko T.
Tiainen, V.-M.
Konttinen, Y. T.
Kinnari, T. J.
description To study the effect of bioactive glass bone substitute granules (S53P4) on bacterial adhesion and biofilm formation on other simultaneously used implant materials and the role of the hypoxic conditions to the adhesion. Bacterial and biofilm formation were studied on materials used both in middle ear prostheses and in fracture fixtures (titanium, polytetrafluoroethylene, polydimethylsiloxane and bioactive glass plates) in the presence or absence of S53P4 granules. The experiments were done either in normal atmosphere or in hypoxia simulating atmospheric conditions of middle ear, mastoid cavity and sinuses. We used two collection strains of Staphylococcus aureus and Staphylococcus epidermidis . In the presence of bioglass and hypoxic conditions the adhesion of the planktonic bacterial cells was decreased for most of the materials. The biofilm formation was decreased for S. epidermidis on titanium and polydimethylsiloxane in both atmospheric conditions and on bioglass plates in normoxia. For S. aureus the biofilm formation was decreased on bioglass plates and polytetrafluoroethylene in normoxia. Hypoxia produces a decrease in the biofilm formation only for S. aureus on polytetrafluoroethylene and for S. epidermidis on bioglass plates. However, in none of the cases bioactive glass increased the bacterial or biofilm adhesion. The presence of bioglass in normoxic and hypoxic conditions prevents the bacterial and biofilm adhesion on surfaces of several typical prosthesis materials in vitro. This may lead to diminishing postoperative infections, however, further in vivo studies are needed.
doi_str_mv 10.1007/s10856-015-5569-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808085334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3829131791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-4a0b76f7d3a381863e4197bb493fe8c0502a6020c5c986137347c5c86493f9673</originalsourceid><addsrcrecordid>eNqNkt1qFTEUhYMo9lh9AG8k4I03Y3cmv3MppVqhYMH2OmQyiSdlZjImGfC8gw9tpqeKCKIkkM3Ot1YSshB6SeAtAZBnmYDiogHCG85F15BHaEe4pA1TVD1GO-i4bBincIKe5XwHAKzj_Ck6aQUD2spuh75feO9swdHjz5xeM9zH2eG89rmEshaH44xzMcv-MEYbrTUjNsPe5VD7Zh5wH6IP44R9TJMpW3ebZe8SDtMymrng2ncpmDHjMON548Z76f6wxG_BYhvnIWzS_Bw98ZVzLx7WU3T7_uLm_LK5-vTh4_m7q8ZyRkrDDPRSeDlQQxVRgjpGOtn3rKPeKQscWiOgBcttpwShkjJZayU2oBOSnqI3R98lxa-ry0VPIVs31uu6uGZNFNTBKWX_RqUC3jKq1H-g1Vcq2ZKKvv4DvYtrmuubN6pjgnIJlSJHyqaYc3JeLylMJh00Ab0FQB8DoGsA9BYAvTm_enBe-8kNvxQ_f7wC7RHIdWv-4tJvR__V9Qfp37pj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719463570</pqid></control><display><type>article</type><title>Effect of S53P4 bone substitute on staphylococcal adhesion and biofilm formation on other implant materials in normal and hypoxic conditions</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pérez-Tanoira, R. ; García-Pedrazuela, M. ; Hyyrynen, T. ; Soininen, A. ; Aarnisalo, A. ; Nieminen, Mikko T. ; Tiainen, V.-M. ; Konttinen, Y. T. ; Kinnari, T. J.</creator><creatorcontrib>Pérez-Tanoira, R. ; García-Pedrazuela, M. ; Hyyrynen, T. ; Soininen, A. ; Aarnisalo, A. ; Nieminen, Mikko T. ; Tiainen, V.-M. ; Konttinen, Y. T. ; Kinnari, T. J.</creatorcontrib><description>To study the effect of bioactive glass bone substitute granules (S53P4) on bacterial adhesion and biofilm formation on other simultaneously used implant materials and the role of the hypoxic conditions to the adhesion. Bacterial and biofilm formation were studied on materials used both in middle ear prostheses and in fracture fixtures (titanium, polytetrafluoroethylene, polydimethylsiloxane and bioactive glass plates) in the presence or absence of S53P4 granules. The experiments were done either in normal atmosphere or in hypoxia simulating atmospheric conditions of middle ear, mastoid cavity and sinuses. We used two collection strains of Staphylococcus aureus and Staphylococcus epidermidis . In the presence of bioglass and hypoxic conditions the adhesion of the planktonic bacterial cells was decreased for most of the materials. The biofilm formation was decreased for S. epidermidis on titanium and polydimethylsiloxane in both atmospheric conditions and on bioglass plates in normoxia. For S. aureus the biofilm formation was decreased on bioglass plates and polytetrafluoroethylene in normoxia. Hypoxia produces a decrease in the biofilm formation only for S. aureus on polytetrafluoroethylene and for S. epidermidis on bioglass plates. However, in none of the cases bioactive glass increased the bacterial or biofilm adhesion. The presence of bioglass in normoxic and hypoxic conditions prevents the bacterial and biofilm adhesion on surfaces of several typical prosthesis materials in vitro. This may lead to diminishing postoperative infections, however, further in vivo studies are needed.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-015-5569-1</identifier><identifier>PMID: 26403279</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adhesion ; Bacteria ; Bacterial Adhesion - drug effects ; Biocompatibility ; Biocompatibility Studies ; Biofilms ; Bioglass ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Bone Substitutes - pharmacology ; Ceramics ; Chemistry and Materials Science ; Colony Count, Microbial ; Composites ; Formations ; Glass ; Hydrogen-Ion Concentration ; Materials Science ; Natural Materials ; Oxygen - metabolism ; Plates ; Polymer Sciences ; Prostheses and Implants ; Regenerative Medicine/Tissue Engineering ; Staphylococcus aureus ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - physiology ; Staphylococcus epidermidis ; Staphylococcus epidermidis - drug effects ; Staphylococcus epidermidis - physiology ; Surfaces and Interfaces ; Surgical implants ; Thin Films</subject><ispartof>Journal of materials science. Materials in medicine, 2015-09, Vol.26 (9), p.239-10, Article 239</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-4a0b76f7d3a381863e4197bb493fe8c0502a6020c5c986137347c5c86493f9673</citedby><cites>FETCH-LOGICAL-c541t-4a0b76f7d3a381863e4197bb493fe8c0502a6020c5c986137347c5c86493f9673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-015-5569-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-015-5569-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26403279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez-Tanoira, R.</creatorcontrib><creatorcontrib>García-Pedrazuela, M.</creatorcontrib><creatorcontrib>Hyyrynen, T.</creatorcontrib><creatorcontrib>Soininen, A.</creatorcontrib><creatorcontrib>Aarnisalo, A.</creatorcontrib><creatorcontrib>Nieminen, Mikko T.</creatorcontrib><creatorcontrib>Tiainen, V.-M.</creatorcontrib><creatorcontrib>Konttinen, Y. T.</creatorcontrib><creatorcontrib>Kinnari, T. J.</creatorcontrib><title>Effect of S53P4 bone substitute on staphylococcal adhesion and biofilm formation on other implant materials in normal and hypoxic conditions</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>To study the effect of bioactive glass bone substitute granules (S53P4) on bacterial adhesion and biofilm formation on other simultaneously used implant materials and the role of the hypoxic conditions to the adhesion. Bacterial and biofilm formation were studied on materials used both in middle ear prostheses and in fracture fixtures (titanium, polytetrafluoroethylene, polydimethylsiloxane and bioactive glass plates) in the presence or absence of S53P4 granules. The experiments were done either in normal atmosphere or in hypoxia simulating atmospheric conditions of middle ear, mastoid cavity and sinuses. We used two collection strains of Staphylococcus aureus and Staphylococcus epidermidis . In the presence of bioglass and hypoxic conditions the adhesion of the planktonic bacterial cells was decreased for most of the materials. The biofilm formation was decreased for S. epidermidis on titanium and polydimethylsiloxane in both atmospheric conditions and on bioglass plates in normoxia. For S. aureus the biofilm formation was decreased on bioglass plates and polytetrafluoroethylene in normoxia. Hypoxia produces a decrease in the biofilm formation only for S. aureus on polytetrafluoroethylene and for S. epidermidis on bioglass plates. However, in none of the cases bioactive glass increased the bacterial or biofilm adhesion. The presence of bioglass in normoxic and hypoxic conditions prevents the bacterial and biofilm adhesion on surfaces of several typical prosthesis materials in vitro. This may lead to diminishing postoperative infections, however, further in vivo studies are needed.</description><subject>Adhesion</subject><subject>Bacteria</subject><subject>Bacterial Adhesion - drug effects</subject><subject>Biocompatibility</subject><subject>Biocompatibility Studies</subject><subject>Biofilms</subject><subject>Bioglass</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Bone Substitutes - pharmacology</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Colony Count, Microbial</subject><subject>Composites</subject><subject>Formations</subject><subject>Glass</subject><subject>Hydrogen-Ion Concentration</subject><subject>Materials Science</subject><subject>Natural Materials</subject><subject>Oxygen - metabolism</subject><subject>Plates</subject><subject>Polymer Sciences</subject><subject>Prostheses and Implants</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - physiology</subject><subject>Staphylococcus epidermidis</subject><subject>Staphylococcus epidermidis - drug effects</subject><subject>Staphylococcus epidermidis - physiology</subject><subject>Surfaces and Interfaces</subject><subject>Surgical implants</subject><subject>Thin Films</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkt1qFTEUhYMo9lh9AG8k4I03Y3cmv3MppVqhYMH2OmQyiSdlZjImGfC8gw9tpqeKCKIkkM3Ot1YSshB6SeAtAZBnmYDiogHCG85F15BHaEe4pA1TVD1GO-i4bBincIKe5XwHAKzj_Ck6aQUD2spuh75feO9swdHjz5xeM9zH2eG89rmEshaH44xzMcv-MEYbrTUjNsPe5VD7Zh5wH6IP44R9TJMpW3ebZe8SDtMymrng2ncpmDHjMON548Z76f6wxG_BYhvnIWzS_Bw98ZVzLx7WU3T7_uLm_LK5-vTh4_m7q8ZyRkrDDPRSeDlQQxVRgjpGOtn3rKPeKQscWiOgBcttpwShkjJZayU2oBOSnqI3R98lxa-ry0VPIVs31uu6uGZNFNTBKWX_RqUC3jKq1H-g1Vcq2ZKKvv4DvYtrmuubN6pjgnIJlSJHyqaYc3JeLylMJh00Ab0FQB8DoGsA9BYAvTm_enBe-8kNvxQ_f7wC7RHIdWv-4tJvR__V9Qfp37pj</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Pérez-Tanoira, R.</creator><creator>García-Pedrazuela, M.</creator><creator>Hyyrynen, T.</creator><creator>Soininen, A.</creator><creator>Aarnisalo, A.</creator><creator>Nieminen, Mikko T.</creator><creator>Tiainen, V.-M.</creator><creator>Konttinen, Y. T.</creator><creator>Kinnari, T. J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20150901</creationdate><title>Effect of S53P4 bone substitute on staphylococcal adhesion and biofilm formation on other implant materials in normal and hypoxic conditions</title><author>Pérez-Tanoira, R. ; García-Pedrazuela, M. ; Hyyrynen, T. ; Soininen, A. ; Aarnisalo, A. ; Nieminen, Mikko T. ; Tiainen, V.-M. ; Konttinen, Y. T. ; Kinnari, T. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-4a0b76f7d3a381863e4197bb493fe8c0502a6020c5c986137347c5c86493f9673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adhesion</topic><topic>Bacteria</topic><topic>Bacterial Adhesion - drug effects</topic><topic>Biocompatibility</topic><topic>Biocompatibility Studies</topic><topic>Biofilms</topic><topic>Bioglass</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Bone Substitutes - pharmacology</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Colony Count, Microbial</topic><topic>Composites</topic><topic>Formations</topic><topic>Glass</topic><topic>Hydrogen-Ion Concentration</topic><topic>Materials Science</topic><topic>Natural Materials</topic><topic>Oxygen - metabolism</topic><topic>Plates</topic><topic>Polymer Sciences</topic><topic>Prostheses and Implants</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - physiology</topic><topic>Staphylococcus epidermidis</topic><topic>Staphylococcus epidermidis - drug effects</topic><topic>Staphylococcus epidermidis - physiology</topic><topic>Surfaces and Interfaces</topic><topic>Surgical implants</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Tanoira, R.</creatorcontrib><creatorcontrib>García-Pedrazuela, M.</creatorcontrib><creatorcontrib>Hyyrynen, T.</creatorcontrib><creatorcontrib>Soininen, A.</creatorcontrib><creatorcontrib>Aarnisalo, A.</creatorcontrib><creatorcontrib>Nieminen, Mikko T.</creatorcontrib><creatorcontrib>Tiainen, V.-M.</creatorcontrib><creatorcontrib>Konttinen, Y. T.</creatorcontrib><creatorcontrib>Kinnari, T. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Tanoira, R.</au><au>García-Pedrazuela, M.</au><au>Hyyrynen, T.</au><au>Soininen, A.</au><au>Aarnisalo, A.</au><au>Nieminen, Mikko T.</au><au>Tiainen, V.-M.</au><au>Konttinen, Y. T.</au><au>Kinnari, T. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of S53P4 bone substitute on staphylococcal adhesion and biofilm formation on other implant materials in normal and hypoxic conditions</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>26</volume><issue>9</issue><spage>239</spage><epage>10</epage><pages>239-10</pages><artnum>239</artnum><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>To study the effect of bioactive glass bone substitute granules (S53P4) on bacterial adhesion and biofilm formation on other simultaneously used implant materials and the role of the hypoxic conditions to the adhesion. Bacterial and biofilm formation were studied on materials used both in middle ear prostheses and in fracture fixtures (titanium, polytetrafluoroethylene, polydimethylsiloxane and bioactive glass plates) in the presence or absence of S53P4 granules. The experiments were done either in normal atmosphere or in hypoxia simulating atmospheric conditions of middle ear, mastoid cavity and sinuses. We used two collection strains of Staphylococcus aureus and Staphylococcus epidermidis . In the presence of bioglass and hypoxic conditions the adhesion of the planktonic bacterial cells was decreased for most of the materials. The biofilm formation was decreased for S. epidermidis on titanium and polydimethylsiloxane in both atmospheric conditions and on bioglass plates in normoxia. For S. aureus the biofilm formation was decreased on bioglass plates and polytetrafluoroethylene in normoxia. Hypoxia produces a decrease in the biofilm formation only for S. aureus on polytetrafluoroethylene and for S. epidermidis on bioglass plates. However, in none of the cases bioactive glass increased the bacterial or biofilm adhesion. The presence of bioglass in normoxic and hypoxic conditions prevents the bacterial and biofilm adhesion on surfaces of several typical prosthesis materials in vitro. This may lead to diminishing postoperative infections, however, further in vivo studies are needed.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26403279</pmid><doi>10.1007/s10856-015-5569-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2015-09, Vol.26 (9), p.239-10, Article 239
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_1808085334
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adhesion
Bacteria
Bacterial Adhesion - drug effects
Biocompatibility
Biocompatibility Studies
Biofilms
Bioglass
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical materials
Bone Substitutes - pharmacology
Ceramics
Chemistry and Materials Science
Colony Count, Microbial
Composites
Formations
Glass
Hydrogen-Ion Concentration
Materials Science
Natural Materials
Oxygen - metabolism
Plates
Polymer Sciences
Prostheses and Implants
Regenerative Medicine/Tissue Engineering
Staphylococcus aureus
Staphylococcus aureus - drug effects
Staphylococcus aureus - physiology
Staphylococcus epidermidis
Staphylococcus epidermidis - drug effects
Staphylococcus epidermidis - physiology
Surfaces and Interfaces
Surgical implants
Thin Films
title Effect of S53P4 bone substitute on staphylococcal adhesion and biofilm formation on other implant materials in normal and hypoxic conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20S53P4%20bone%20substitute%20on%20staphylococcal%20adhesion%20and%20biofilm%20formation%20on%20other%20implant%20materials%20in%20normal%20and%20hypoxic%20conditions&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=P%C3%A9rez-Tanoira,%20R.&rft.date=2015-09-01&rft.volume=26&rft.issue=9&rft.spage=239&rft.epage=10&rft.pages=239-10&rft.artnum=239&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-015-5569-1&rft_dat=%3Cproquest_cross%3E3829131791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719463570&rft_id=info:pmid/26403279&rfr_iscdi=true