Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement

We present the first asymptotically optimal feedback planning algorithm for nonholonomic systems and additive cost functionals. Our algorithm is based on three well-established numerical practices: 1) positive coefficient numerical approximations of the Hamilton-Jacobi-Bellman equations; 2) the Fast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2016-04, Vol.35 (5), p.565-584
Hauptverfasser: Yershov, Dmitry S., Frazzoli, Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 584
container_issue 5
container_start_page 565
container_title The International journal of robotics research
container_volume 35
creator Yershov, Dmitry S.
Frazzoli, Emilio
description We present the first asymptotically optimal feedback planning algorithm for nonholonomic systems and additive cost functionals. Our algorithm is based on three well-established numerical practices: 1) positive coefficient numerical approximations of the Hamilton-Jacobi-Bellman equations; 2) the Fast Marching Method, which is a fast nonlinear solver that utilizes Bellman’s dynamic programming principle for efficient computations; and 3) an adaptive mesh-refinement algorithm designed to improve the resolution of an initial simplicial mesh and reduce the solution numerical error. By refining the discretization mesh globally, we compute a sequence of numerical solutions that converges to the true viscosity solution of the Hamilton-Jacobi-Bellman equations. In order to reduce the total computational cost of the proposed planning algorithm, we find that it is sufficient to refine the discretization within a small region in the vicinity of the optimal trajectory. Numerical experiments confirm our theoretical findings and establish that our algorithm outperforms previous asymptotically optimal planning algorithms, such as PRM* and RRT*.
doi_str_mv 10.1177/0278364915602958
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808083316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364915602958</sage_id><sourcerecordid>1808083316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-bd50e45f5b2b3883d5854fa5ebf4847b00597c6385f1254c6f0030b60d08c9533</originalsourceid><addsrcrecordid>eNp1kT1PwzAQhi0EEqWwM1piYQnYsR07Y6mAgiqxwBzZjl1SHDvESaX-exyVAVVCp7sb7rlX9wHANUZ3GHN-j3IuSEFLzAqUl0ycgBnmFGcE8-IUzKZyNtXPwUWMW4QQKVA5A_tF3LfdEIZGS-f2MHRD00oHrTG1kvoLdk563_gNHOMUJfRja_qJhivZNm4IPnuVOqgmezDOtdLDGNzO9FD6OjmUtUyaOwNbEz9hb2zjTWv8cAnOrHTRXP3mOfh4enxfrrL12_PLcrHONKH5kKmaIUOZZSpXRAhSM8GolcwoSwXlCiFWcl0QwSzOGdWFTashVaAaCV0yQubg9qDb9eF7NHGo2ibqNKr0JoyxwgIlIwQXCb05Qrdh7H2arsJcMIJzylmi0IHSfYgxLVR1fbpZv68wqqZfVMe_SC3ZoSXKjfkj-h__A_dxiU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785312475</pqid></control><display><type>article</type><title>Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement</title><source>SAGE Complete A-Z List</source><creator>Yershov, Dmitry S. ; Frazzoli, Emilio</creator><creatorcontrib>Yershov, Dmitry S. ; Frazzoli, Emilio</creatorcontrib><description>We present the first asymptotically optimal feedback planning algorithm for nonholonomic systems and additive cost functionals. Our algorithm is based on three well-established numerical practices: 1) positive coefficient numerical approximations of the Hamilton-Jacobi-Bellman equations; 2) the Fast Marching Method, which is a fast nonlinear solver that utilizes Bellman’s dynamic programming principle for efficient computations; and 3) an adaptive mesh-refinement algorithm designed to improve the resolution of an initial simplicial mesh and reduce the solution numerical error. By refining the discretization mesh globally, we compute a sequence of numerical solutions that converges to the true viscosity solution of the Hamilton-Jacobi-Bellman equations. In order to reduce the total computational cost of the proposed planning algorithm, we find that it is sufficient to refine the discretization within a small region in the vicinity of the optimal trajectory. Numerical experiments confirm our theoretical findings and establish that our algorithm outperforms previous asymptotically optimal planning algorithms, such as PRM* and RRT*.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364915602958</identifier><identifier>CODEN: IJRREL</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Approximation ; Asymptotic properties ; Computational efficiency ; Discretization ; Dynamic programming ; Feedback ; Mathematical analysis ; Mathematical models ; Optimization ; Robotics</subject><ispartof>The International journal of robotics research, 2016-04, Vol.35 (5), p.565-584</ispartof><rights>The Author(s) 2015</rights><rights>Copyright SAGE PUBLICATIONS, INC. Apr 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-bd50e45f5b2b3883d5854fa5ebf4847b00597c6385f1254c6f0030b60d08c9533</citedby><cites>FETCH-LOGICAL-c342t-bd50e45f5b2b3883d5854fa5ebf4847b00597c6385f1254c6f0030b60d08c9533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364915602958$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364915602958$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Yershov, Dmitry S.</creatorcontrib><creatorcontrib>Frazzoli, Emilio</creatorcontrib><title>Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement</title><title>The International journal of robotics research</title><description>We present the first asymptotically optimal feedback planning algorithm for nonholonomic systems and additive cost functionals. Our algorithm is based on three well-established numerical practices: 1) positive coefficient numerical approximations of the Hamilton-Jacobi-Bellman equations; 2) the Fast Marching Method, which is a fast nonlinear solver that utilizes Bellman’s dynamic programming principle for efficient computations; and 3) an adaptive mesh-refinement algorithm designed to improve the resolution of an initial simplicial mesh and reduce the solution numerical error. By refining the discretization mesh globally, we compute a sequence of numerical solutions that converges to the true viscosity solution of the Hamilton-Jacobi-Bellman equations. In order to reduce the total computational cost of the proposed planning algorithm, we find that it is sufficient to refine the discretization within a small region in the vicinity of the optimal trajectory. Numerical experiments confirm our theoretical findings and establish that our algorithm outperforms previous asymptotically optimal planning algorithms, such as PRM* and RRT*.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Computational efficiency</subject><subject>Discretization</subject><subject>Dynamic programming</subject><subject>Feedback</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Robotics</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kT1PwzAQhi0EEqWwM1piYQnYsR07Y6mAgiqxwBzZjl1SHDvESaX-exyVAVVCp7sb7rlX9wHANUZ3GHN-j3IuSEFLzAqUl0ycgBnmFGcE8-IUzKZyNtXPwUWMW4QQKVA5A_tF3LfdEIZGS-f2MHRD00oHrTG1kvoLdk563_gNHOMUJfRja_qJhivZNm4IPnuVOqgmezDOtdLDGNzO9FD6OjmUtUyaOwNbEz9hb2zjTWv8cAnOrHTRXP3mOfh4enxfrrL12_PLcrHONKH5kKmaIUOZZSpXRAhSM8GolcwoSwXlCiFWcl0QwSzOGdWFTashVaAaCV0yQubg9qDb9eF7NHGo2ibqNKr0JoyxwgIlIwQXCb05Qrdh7H2arsJcMIJzylmi0IHSfYgxLVR1fbpZv68wqqZfVMe_SC3ZoSXKjfkj-h__A_dxiU0</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Yershov, Dmitry S.</creator><creator>Frazzoli, Emilio</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201604</creationdate><title>Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement</title><author>Yershov, Dmitry S. ; Frazzoli, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-bd50e45f5b2b3883d5854fa5ebf4847b00597c6385f1254c6f0030b60d08c9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Computational efficiency</topic><topic>Discretization</topic><topic>Dynamic programming</topic><topic>Feedback</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yershov, Dmitry S.</creatorcontrib><creatorcontrib>Frazzoli, Emilio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yershov, Dmitry S.</au><au>Frazzoli, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement</atitle><jtitle>The International journal of robotics research</jtitle><date>2016-04</date><risdate>2016</risdate><volume>35</volume><issue>5</issue><spage>565</spage><epage>584</epage><pages>565-584</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><coden>IJRREL</coden><abstract>We present the first asymptotically optimal feedback planning algorithm for nonholonomic systems and additive cost functionals. Our algorithm is based on three well-established numerical practices: 1) positive coefficient numerical approximations of the Hamilton-Jacobi-Bellman equations; 2) the Fast Marching Method, which is a fast nonlinear solver that utilizes Bellman’s dynamic programming principle for efficient computations; and 3) an adaptive mesh-refinement algorithm designed to improve the resolution of an initial simplicial mesh and reduce the solution numerical error. By refining the discretization mesh globally, we compute a sequence of numerical solutions that converges to the true viscosity solution of the Hamilton-Jacobi-Bellman equations. In order to reduce the total computational cost of the proposed planning algorithm, we find that it is sufficient to refine the discretization within a small region in the vicinity of the optimal trajectory. Numerical experiments confirm our theoretical findings and establish that our algorithm outperforms previous asymptotically optimal planning algorithms, such as PRM* and RRT*.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364915602958</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2016-04, Vol.35 (5), p.565-584
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_miscellaneous_1808083316
source SAGE Complete A-Z List
subjects Algorithms
Approximation
Asymptotic properties
Computational efficiency
Discretization
Dynamic programming
Feedback
Mathematical analysis
Mathematical models
Optimization
Robotics
title Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotically%20optimal%20feedback%20planning%20using%20a%20numerical%20Hamilton-Jacobi-Bellman%20solver%20and%20an%20adaptive%20mesh%20refinement&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Yershov,%20Dmitry%20S.&rft.date=2016-04&rft.volume=35&rft.issue=5&rft.spage=565&rft.epage=584&rft.pages=565-584&rft.issn=0278-3649&rft.eissn=1741-3176&rft.coden=IJRREL&rft_id=info:doi/10.1177/0278364915602958&rft_dat=%3Cproquest_cross%3E1808083316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785312475&rft_id=info:pmid/&rft_sage_id=10.1177_0278364915602958&rfr_iscdi=true