Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement
We present the first asymptotically optimal feedback planning algorithm for nonholonomic systems and additive cost functionals. Our algorithm is based on three well-established numerical practices: 1) positive coefficient numerical approximations of the Hamilton-Jacobi-Bellman equations; 2) the Fast...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2016-04, Vol.35 (5), p.565-584 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 584 |
---|---|
container_issue | 5 |
container_start_page | 565 |
container_title | The International journal of robotics research |
container_volume | 35 |
creator | Yershov, Dmitry S. Frazzoli, Emilio |
description | We present the first asymptotically optimal feedback planning algorithm for nonholonomic systems and additive cost functionals. Our algorithm is based on three well-established numerical practices: 1) positive coefficient numerical approximations of the Hamilton-Jacobi-Bellman equations; 2) the Fast Marching Method, which is a fast nonlinear solver that utilizes Bellman’s dynamic programming principle for efficient computations; and 3) an adaptive mesh-refinement algorithm designed to improve the resolution of an initial simplicial mesh and reduce the solution numerical error. By refining the discretization mesh globally, we compute a sequence of numerical solutions that converges to the true viscosity solution of the Hamilton-Jacobi-Bellman equations. In order to reduce the total computational cost of the proposed planning algorithm, we find that it is sufficient to refine the discretization within a small region in the vicinity of the optimal trajectory. Numerical experiments confirm our theoretical findings and establish that our algorithm outperforms previous asymptotically optimal planning algorithms, such as PRM* and RRT*. |
doi_str_mv | 10.1177/0278364915602958 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808083316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364915602958</sage_id><sourcerecordid>1808083316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-bd50e45f5b2b3883d5854fa5ebf4847b00597c6385f1254c6f0030b60d08c9533</originalsourceid><addsrcrecordid>eNp1kT1PwzAQhi0EEqWwM1piYQnYsR07Y6mAgiqxwBzZjl1SHDvESaX-exyVAVVCp7sb7rlX9wHANUZ3GHN-j3IuSEFLzAqUl0ycgBnmFGcE8-IUzKZyNtXPwUWMW4QQKVA5A_tF3LfdEIZGS-f2MHRD00oHrTG1kvoLdk563_gNHOMUJfRja_qJhivZNm4IPnuVOqgmezDOtdLDGNzO9FD6OjmUtUyaOwNbEz9hb2zjTWv8cAnOrHTRXP3mOfh4enxfrrL12_PLcrHONKH5kKmaIUOZZSpXRAhSM8GolcwoSwXlCiFWcl0QwSzOGdWFTashVaAaCV0yQubg9qDb9eF7NHGo2ibqNKr0JoyxwgIlIwQXCb05Qrdh7H2arsJcMIJzylmi0IHSfYgxLVR1fbpZv68wqqZfVMe_SC3ZoSXKjfkj-h__A_dxiU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785312475</pqid></control><display><type>article</type><title>Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement</title><source>SAGE Complete A-Z List</source><creator>Yershov, Dmitry S. ; Frazzoli, Emilio</creator><creatorcontrib>Yershov, Dmitry S. ; Frazzoli, Emilio</creatorcontrib><description>We present the first asymptotically optimal feedback planning algorithm for nonholonomic systems and additive cost functionals. Our algorithm is based on three well-established numerical practices: 1) positive coefficient numerical approximations of the Hamilton-Jacobi-Bellman equations; 2) the Fast Marching Method, which is a fast nonlinear solver that utilizes Bellman’s dynamic programming principle for efficient computations; and 3) an adaptive mesh-refinement algorithm designed to improve the resolution of an initial simplicial mesh and reduce the solution numerical error. By refining the discretization mesh globally, we compute a sequence of numerical solutions that converges to the true viscosity solution of the Hamilton-Jacobi-Bellman equations. In order to reduce the total computational cost of the proposed planning algorithm, we find that it is sufficient to refine the discretization within a small region in the vicinity of the optimal trajectory. Numerical experiments confirm our theoretical findings and establish that our algorithm outperforms previous asymptotically optimal planning algorithms, such as PRM* and RRT*.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364915602958</identifier><identifier>CODEN: IJRREL</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Approximation ; Asymptotic properties ; Computational efficiency ; Discretization ; Dynamic programming ; Feedback ; Mathematical analysis ; Mathematical models ; Optimization ; Robotics</subject><ispartof>The International journal of robotics research, 2016-04, Vol.35 (5), p.565-584</ispartof><rights>The Author(s) 2015</rights><rights>Copyright SAGE PUBLICATIONS, INC. Apr 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-bd50e45f5b2b3883d5854fa5ebf4847b00597c6385f1254c6f0030b60d08c9533</citedby><cites>FETCH-LOGICAL-c342t-bd50e45f5b2b3883d5854fa5ebf4847b00597c6385f1254c6f0030b60d08c9533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364915602958$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364915602958$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Yershov, Dmitry S.</creatorcontrib><creatorcontrib>Frazzoli, Emilio</creatorcontrib><title>Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement</title><title>The International journal of robotics research</title><description>We present the first asymptotically optimal feedback planning algorithm for nonholonomic systems and additive cost functionals. Our algorithm is based on three well-established numerical practices: 1) positive coefficient numerical approximations of the Hamilton-Jacobi-Bellman equations; 2) the Fast Marching Method, which is a fast nonlinear solver that utilizes Bellman’s dynamic programming principle for efficient computations; and 3) an adaptive mesh-refinement algorithm designed to improve the resolution of an initial simplicial mesh and reduce the solution numerical error. By refining the discretization mesh globally, we compute a sequence of numerical solutions that converges to the true viscosity solution of the Hamilton-Jacobi-Bellman equations. In order to reduce the total computational cost of the proposed planning algorithm, we find that it is sufficient to refine the discretization within a small region in the vicinity of the optimal trajectory. Numerical experiments confirm our theoretical findings and establish that our algorithm outperforms previous asymptotically optimal planning algorithms, such as PRM* and RRT*.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Computational efficiency</subject><subject>Discretization</subject><subject>Dynamic programming</subject><subject>Feedback</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Robotics</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kT1PwzAQhi0EEqWwM1piYQnYsR07Y6mAgiqxwBzZjl1SHDvESaX-exyVAVVCp7sb7rlX9wHANUZ3GHN-j3IuSEFLzAqUl0ycgBnmFGcE8-IUzKZyNtXPwUWMW4QQKVA5A_tF3LfdEIZGS-f2MHRD00oHrTG1kvoLdk563_gNHOMUJfRja_qJhivZNm4IPnuVOqgmezDOtdLDGNzO9FD6OjmUtUyaOwNbEz9hb2zjTWv8cAnOrHTRXP3mOfh4enxfrrL12_PLcrHONKH5kKmaIUOZZSpXRAhSM8GolcwoSwXlCiFWcl0QwSzOGdWFTashVaAaCV0yQubg9qDb9eF7NHGo2ibqNKr0JoyxwgIlIwQXCb05Qrdh7H2arsJcMIJzylmi0IHSfYgxLVR1fbpZv68wqqZfVMe_SC3ZoSXKjfkj-h__A_dxiU0</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Yershov, Dmitry S.</creator><creator>Frazzoli, Emilio</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201604</creationdate><title>Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement</title><author>Yershov, Dmitry S. ; Frazzoli, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-bd50e45f5b2b3883d5854fa5ebf4847b00597c6385f1254c6f0030b60d08c9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Computational efficiency</topic><topic>Discretization</topic><topic>Dynamic programming</topic><topic>Feedback</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yershov, Dmitry S.</creatorcontrib><creatorcontrib>Frazzoli, Emilio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yershov, Dmitry S.</au><au>Frazzoli, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement</atitle><jtitle>The International journal of robotics research</jtitle><date>2016-04</date><risdate>2016</risdate><volume>35</volume><issue>5</issue><spage>565</spage><epage>584</epage><pages>565-584</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><coden>IJRREL</coden><abstract>We present the first asymptotically optimal feedback planning algorithm for nonholonomic systems and additive cost functionals. Our algorithm is based on three well-established numerical practices: 1) positive coefficient numerical approximations of the Hamilton-Jacobi-Bellman equations; 2) the Fast Marching Method, which is a fast nonlinear solver that utilizes Bellman’s dynamic programming principle for efficient computations; and 3) an adaptive mesh-refinement algorithm designed to improve the resolution of an initial simplicial mesh and reduce the solution numerical error. By refining the discretization mesh globally, we compute a sequence of numerical solutions that converges to the true viscosity solution of the Hamilton-Jacobi-Bellman equations. In order to reduce the total computational cost of the proposed planning algorithm, we find that it is sufficient to refine the discretization within a small region in the vicinity of the optimal trajectory. Numerical experiments confirm our theoretical findings and establish that our algorithm outperforms previous asymptotically optimal planning algorithms, such as PRM* and RRT*.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364915602958</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2016-04, Vol.35 (5), p.565-584 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808083316 |
source | SAGE Complete A-Z List |
subjects | Algorithms Approximation Asymptotic properties Computational efficiency Discretization Dynamic programming Feedback Mathematical analysis Mathematical models Optimization Robotics |
title | Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotically%20optimal%20feedback%20planning%20using%20a%20numerical%20Hamilton-Jacobi-Bellman%20solver%20and%20an%20adaptive%20mesh%20refinement&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Yershov,%20Dmitry%20S.&rft.date=2016-04&rft.volume=35&rft.issue=5&rft.spage=565&rft.epage=584&rft.pages=565-584&rft.issn=0278-3649&rft.eissn=1741-3176&rft.coden=IJRREL&rft_id=info:doi/10.1177/0278364915602958&rft_dat=%3Cproquest_cross%3E1808083316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785312475&rft_id=info:pmid/&rft_sage_id=10.1177_0278364915602958&rfr_iscdi=true |