On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation
The generalized modified Korteweg–de Vries equation of the fifth order with dissipation is considered. The Painlevé test is applied for studying integrability of this equation. It is shown that the generalized modified Korteweg–de Vries equation of the fifth order does not pass the Painlevé test in...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2016-04, Vol.280, p.39-45 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | |
container_start_page | 39 |
container_title | Applied mathematics and computation |
container_volume | 280 |
creator | Kudryashov, Nikolay A |
description | The generalized modified Korteweg–de Vries equation of the fifth order with dissipation is considered. The Painlevé test is applied for studying integrability of this equation. It is shown that the generalized modified Korteweg–de Vries equation of the fifth order does not pass the Painlevé test in the general case but has the expansion of the solution in the Laurent series. As a consequence the equation can have some exact solutions at additional conditions on the parameters of the equation. We present the effective modification of methods for finding of solitary wave and elliptic solutions of nonlinear differential equations. Solitary wave and elliptic solutions of the generalized modified Korteweg–de Vries equation of the fifth order are found by means of expansion for solution in the Laurent series. These solutions can be used for description of nonlinear waves in the medium with dissipation, dispersion. |
doi_str_mv | 10.1016/j.amc.2016.01.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808081512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300316300327</els_id><sourcerecordid>1808081512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-a51b7791d8d53efec6e19fee8ba484d3d22dfeab73c8c4aa80cc3f2e1fb569723</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAey8ZJMwjvMUK1TxEkjdAFvLscetqzRu7YQKVvwDf8iXkFDWaBZzF_eMNIeQcwYxA5ZfrmK5VnEyxBhYDDw5IBNWFjzK8rQ6JBOAKo84AD8mJyGsAKDIWTohOG9pcE3fWdcG6gxdYIteNvYDNV07bY0dwqPzHe5w8f35pZG-eouB4raXIzVC3RKpsaZbUuc1erqzQ9Q2BLv57ZySIyObgGd_e0pebm-eZ_fR0_zuYXb9FCnOoYtkxuqiqJgudcbRoMqRVQaxrGVapprrJNEGZV1wVapUyhKU4iZBZuosr4qET8nF_u7Gu22PoRNrGxQ2jWzR9UGwEoZhGRurbF9V3oXg0YiNt2vp3wUDMSoVKzEoFaNSAUwMSgfmas_g8MObRS-Cstgq1Naj6oR29h_6B_2Bghw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808081512</pqid></control><display><type>article</type><title>On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kudryashov, Nikolay A</creator><creatorcontrib>Kudryashov, Nikolay A</creatorcontrib><description>The generalized modified Korteweg–de Vries equation of the fifth order with dissipation is considered. The Painlevé test is applied for studying integrability of this equation. It is shown that the generalized modified Korteweg–de Vries equation of the fifth order does not pass the Painlevé test in the general case but has the expansion of the solution in the Laurent series. As a consequence the equation can have some exact solutions at additional conditions on the parameters of the equation. We present the effective modification of methods for finding of solitary wave and elliptic solutions of nonlinear differential equations. Solitary wave and elliptic solutions of the generalized modified Korteweg–de Vries equation of the fifth order are found by means of expansion for solution in the Laurent series. These solutions can be used for description of nonlinear waves in the medium with dissipation, dispersion.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2016.01.032</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Differential equations ; Dissipation ; Elliptic solution ; Exact solution ; Exact solutions ; Integral equations ; Korteweg–de Vries equation of the fifth order ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Painlevé property ; Painlevé test ; Solitary waves</subject><ispartof>Applied mathematics and computation, 2016-04, Vol.280, p.39-45</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-a51b7791d8d53efec6e19fee8ba484d3d22dfeab73c8c4aa80cc3f2e1fb569723</citedby><cites>FETCH-LOGICAL-c330t-a51b7791d8d53efec6e19fee8ba484d3d22dfeab73c8c4aa80cc3f2e1fb569723</cites><orcidid>0000-0001-5926-9715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2016.01.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kudryashov, Nikolay A</creatorcontrib><title>On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation</title><title>Applied mathematics and computation</title><description>The generalized modified Korteweg–de Vries equation of the fifth order with dissipation is considered. The Painlevé test is applied for studying integrability of this equation. It is shown that the generalized modified Korteweg–de Vries equation of the fifth order does not pass the Painlevé test in the general case but has the expansion of the solution in the Laurent series. As a consequence the equation can have some exact solutions at additional conditions on the parameters of the equation. We present the effective modification of methods for finding of solitary wave and elliptic solutions of nonlinear differential equations. Solitary wave and elliptic solutions of the generalized modified Korteweg–de Vries equation of the fifth order are found by means of expansion for solution in the Laurent series. These solutions can be used for description of nonlinear waves in the medium with dissipation, dispersion.</description><subject>Differential equations</subject><subject>Dissipation</subject><subject>Elliptic solution</subject><subject>Exact solution</subject><subject>Exact solutions</subject><subject>Integral equations</subject><subject>Korteweg–de Vries equation of the fifth order</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Painlevé property</subject><subject>Painlevé test</subject><subject>Solitary waves</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAey8ZJMwjvMUK1TxEkjdAFvLscetqzRu7YQKVvwDf8iXkFDWaBZzF_eMNIeQcwYxA5ZfrmK5VnEyxBhYDDw5IBNWFjzK8rQ6JBOAKo84AD8mJyGsAKDIWTohOG9pcE3fWdcG6gxdYIteNvYDNV07bY0dwqPzHe5w8f35pZG-eouB4raXIzVC3RKpsaZbUuc1erqzQ9Q2BLv57ZySIyObgGd_e0pebm-eZ_fR0_zuYXb9FCnOoYtkxuqiqJgudcbRoMqRVQaxrGVapprrJNEGZV1wVapUyhKU4iZBZuosr4qET8nF_u7Gu22PoRNrGxQ2jWzR9UGwEoZhGRurbF9V3oXg0YiNt2vp3wUDMSoVKzEoFaNSAUwMSgfmas_g8MObRS-Cstgq1Naj6oR29h_6B_2Bghw</recordid><startdate>20160420</startdate><enddate>20160420</enddate><creator>Kudryashov, Nikolay A</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5926-9715</orcidid></search><sort><creationdate>20160420</creationdate><title>On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation</title><author>Kudryashov, Nikolay A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-a51b7791d8d53efec6e19fee8ba484d3d22dfeab73c8c4aa80cc3f2e1fb569723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Differential equations</topic><topic>Dissipation</topic><topic>Elliptic solution</topic><topic>Exact solution</topic><topic>Exact solutions</topic><topic>Integral equations</topic><topic>Korteweg–de Vries equation of the fifth order</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Painlevé property</topic><topic>Painlevé test</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudryashov, Nikolay A</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudryashov, Nikolay A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation</atitle><jtitle>Applied mathematics and computation</jtitle><date>2016-04-20</date><risdate>2016</risdate><volume>280</volume><spage>39</spage><epage>45</epage><pages>39-45</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The generalized modified Korteweg–de Vries equation of the fifth order with dissipation is considered. The Painlevé test is applied for studying integrability of this equation. It is shown that the generalized modified Korteweg–de Vries equation of the fifth order does not pass the Painlevé test in the general case but has the expansion of the solution in the Laurent series. As a consequence the equation can have some exact solutions at additional conditions on the parameters of the equation. We present the effective modification of methods for finding of solitary wave and elliptic solutions of nonlinear differential equations. Solitary wave and elliptic solutions of the generalized modified Korteweg–de Vries equation of the fifth order are found by means of expansion for solution in the Laurent series. These solutions can be used for description of nonlinear waves in the medium with dissipation, dispersion.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2016.01.032</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5926-9715</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2016-04, Vol.280, p.39-45 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808081512 |
source | Access via ScienceDirect (Elsevier) |
subjects | Differential equations Dissipation Elliptic solution Exact solution Exact solutions Integral equations Korteweg–de Vries equation of the fifth order Mathematical analysis Mathematical models Nonlinearity Painlevé property Painlevé test Solitary waves |
title | On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20solutions%20of%20generalized%20modified%20Korteweg%E2%80%93de%20Vries%20equation%20of%20the%20fifth%20order%20with%20dissipation&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Kudryashov,%20Nikolay%20A&rft.date=2016-04-20&rft.volume=280&rft.spage=39&rft.epage=45&rft.pages=39-45&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2016.01.032&rft_dat=%3Cproquest_cross%3E1808081512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808081512&rft_id=info:pmid/&rft_els_id=S0096300316300327&rfr_iscdi=true |