On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation

The generalized modified Korteweg–de Vries equation of the fifth order with dissipation is considered. The Painlevé test is applied for studying integrability of this equation. It is shown that the generalized modified Korteweg–de Vries equation of the fifth order does not pass the Painlevé test in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2016-04, Vol.280, p.39-45
1. Verfasser: Kudryashov, Nikolay A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue
container_start_page 39
container_title Applied mathematics and computation
container_volume 280
creator Kudryashov, Nikolay A
description The generalized modified Korteweg–de Vries equation of the fifth order with dissipation is considered. The Painlevé test is applied for studying integrability of this equation. It is shown that the generalized modified Korteweg–de Vries equation of the fifth order does not pass the Painlevé test in the general case but has the expansion of the solution in the Laurent series. As a consequence the equation can have some exact solutions at additional conditions on the parameters of the equation. We present the effective modification of methods for finding of solitary wave and elliptic solutions of nonlinear differential equations. Solitary wave and elliptic solutions of the generalized modified Korteweg–de Vries equation of the fifth order are found by means of expansion for solution in the Laurent series. These solutions can be used for description of nonlinear waves in the medium with dissipation, dispersion.
doi_str_mv 10.1016/j.amc.2016.01.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808081512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300316300327</els_id><sourcerecordid>1808081512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-a51b7791d8d53efec6e19fee8ba484d3d22dfeab73c8c4aa80cc3f2e1fb569723</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAey8ZJMwjvMUK1TxEkjdAFvLscetqzRu7YQKVvwDf8iXkFDWaBZzF_eMNIeQcwYxA5ZfrmK5VnEyxBhYDDw5IBNWFjzK8rQ6JBOAKo84AD8mJyGsAKDIWTohOG9pcE3fWdcG6gxdYIteNvYDNV07bY0dwqPzHe5w8f35pZG-eouB4raXIzVC3RKpsaZbUuc1erqzQ9Q2BLv57ZySIyObgGd_e0pebm-eZ_fR0_zuYXb9FCnOoYtkxuqiqJgudcbRoMqRVQaxrGVapprrJNEGZV1wVapUyhKU4iZBZuosr4qET8nF_u7Gu22PoRNrGxQ2jWzR9UGwEoZhGRurbF9V3oXg0YiNt2vp3wUDMSoVKzEoFaNSAUwMSgfmas_g8MObRS-Cstgq1Naj6oR29h_6B_2Bghw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808081512</pqid></control><display><type>article</type><title>On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kudryashov, Nikolay A</creator><creatorcontrib>Kudryashov, Nikolay A</creatorcontrib><description>The generalized modified Korteweg–de Vries equation of the fifth order with dissipation is considered. The Painlevé test is applied for studying integrability of this equation. It is shown that the generalized modified Korteweg–de Vries equation of the fifth order does not pass the Painlevé test in the general case but has the expansion of the solution in the Laurent series. As a consequence the equation can have some exact solutions at additional conditions on the parameters of the equation. We present the effective modification of methods for finding of solitary wave and elliptic solutions of nonlinear differential equations. Solitary wave and elliptic solutions of the generalized modified Korteweg–de Vries equation of the fifth order are found by means of expansion for solution in the Laurent series. These solutions can be used for description of nonlinear waves in the medium with dissipation, dispersion.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2016.01.032</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Differential equations ; Dissipation ; Elliptic solution ; Exact solution ; Exact solutions ; Integral equations ; Korteweg–de Vries equation of the fifth order ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Painlevé property ; Painlevé test ; Solitary waves</subject><ispartof>Applied mathematics and computation, 2016-04, Vol.280, p.39-45</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-a51b7791d8d53efec6e19fee8ba484d3d22dfeab73c8c4aa80cc3f2e1fb569723</citedby><cites>FETCH-LOGICAL-c330t-a51b7791d8d53efec6e19fee8ba484d3d22dfeab73c8c4aa80cc3f2e1fb569723</cites><orcidid>0000-0001-5926-9715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2016.01.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kudryashov, Nikolay A</creatorcontrib><title>On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation</title><title>Applied mathematics and computation</title><description>The generalized modified Korteweg–de Vries equation of the fifth order with dissipation is considered. The Painlevé test is applied for studying integrability of this equation. It is shown that the generalized modified Korteweg–de Vries equation of the fifth order does not pass the Painlevé test in the general case but has the expansion of the solution in the Laurent series. As a consequence the equation can have some exact solutions at additional conditions on the parameters of the equation. We present the effective modification of methods for finding of solitary wave and elliptic solutions of nonlinear differential equations. Solitary wave and elliptic solutions of the generalized modified Korteweg–de Vries equation of the fifth order are found by means of expansion for solution in the Laurent series. These solutions can be used for description of nonlinear waves in the medium with dissipation, dispersion.</description><subject>Differential equations</subject><subject>Dissipation</subject><subject>Elliptic solution</subject><subject>Exact solution</subject><subject>Exact solutions</subject><subject>Integral equations</subject><subject>Korteweg–de Vries equation of the fifth order</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Painlevé property</subject><subject>Painlevé test</subject><subject>Solitary waves</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAey8ZJMwjvMUK1TxEkjdAFvLscetqzRu7YQKVvwDf8iXkFDWaBZzF_eMNIeQcwYxA5ZfrmK5VnEyxBhYDDw5IBNWFjzK8rQ6JBOAKo84AD8mJyGsAKDIWTohOG9pcE3fWdcG6gxdYIteNvYDNV07bY0dwqPzHe5w8f35pZG-eouB4raXIzVC3RKpsaZbUuc1erqzQ9Q2BLv57ZySIyObgGd_e0pebm-eZ_fR0_zuYXb9FCnOoYtkxuqiqJgudcbRoMqRVQaxrGVapprrJNEGZV1wVapUyhKU4iZBZuosr4qET8nF_u7Gu22PoRNrGxQ2jWzR9UGwEoZhGRurbF9V3oXg0YiNt2vp3wUDMSoVKzEoFaNSAUwMSgfmas_g8MObRS-Cstgq1Naj6oR29h_6B_2Bghw</recordid><startdate>20160420</startdate><enddate>20160420</enddate><creator>Kudryashov, Nikolay A</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5926-9715</orcidid></search><sort><creationdate>20160420</creationdate><title>On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation</title><author>Kudryashov, Nikolay A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-a51b7791d8d53efec6e19fee8ba484d3d22dfeab73c8c4aa80cc3f2e1fb569723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Differential equations</topic><topic>Dissipation</topic><topic>Elliptic solution</topic><topic>Exact solution</topic><topic>Exact solutions</topic><topic>Integral equations</topic><topic>Korteweg–de Vries equation of the fifth order</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Painlevé property</topic><topic>Painlevé test</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudryashov, Nikolay A</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudryashov, Nikolay A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation</atitle><jtitle>Applied mathematics and computation</jtitle><date>2016-04-20</date><risdate>2016</risdate><volume>280</volume><spage>39</spage><epage>45</epage><pages>39-45</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The generalized modified Korteweg–de Vries equation of the fifth order with dissipation is considered. The Painlevé test is applied for studying integrability of this equation. It is shown that the generalized modified Korteweg–de Vries equation of the fifth order does not pass the Painlevé test in the general case but has the expansion of the solution in the Laurent series. As a consequence the equation can have some exact solutions at additional conditions on the parameters of the equation. We present the effective modification of methods for finding of solitary wave and elliptic solutions of nonlinear differential equations. Solitary wave and elliptic solutions of the generalized modified Korteweg–de Vries equation of the fifth order are found by means of expansion for solution in the Laurent series. These solutions can be used for description of nonlinear waves in the medium with dissipation, dispersion.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2016.01.032</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5926-9715</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2016-04, Vol.280, p.39-45
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1808081512
source Access via ScienceDirect (Elsevier)
subjects Differential equations
Dissipation
Elliptic solution
Exact solution
Exact solutions
Integral equations
Korteweg–de Vries equation of the fifth order
Mathematical analysis
Mathematical models
Nonlinearity
Painlevé property
Painlevé test
Solitary waves
title On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20solutions%20of%20generalized%20modified%20Korteweg%E2%80%93de%20Vries%20equation%20of%20the%20fifth%20order%20with%20dissipation&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Kudryashov,%20Nikolay%20A&rft.date=2016-04-20&rft.volume=280&rft.spage=39&rft.epage=45&rft.pages=39-45&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2016.01.032&rft_dat=%3Cproquest_cross%3E1808081512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808081512&rft_id=info:pmid/&rft_els_id=S0096300316300327&rfr_iscdi=true