Mixture of grouped regressors and its application to visual mapping

Mixture of regressors (MoR) is a widely used regression approach for approximating nonlinear mappings between input and target outputs. However, existing learning procedures for MoR are prone to overfitting when only limited amounts of training data are available. To address this problem, we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2016-05, Vol.53, p.184-194
Hauptverfasser: Pan, Lili, Saragih, Jason M., Chu, Wen-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue
container_start_page 184
container_title Pattern recognition
container_volume 53
creator Pan, Lili
Saragih, Jason M.
Chu, Wen-Sheng
description Mixture of regressors (MoR) is a widely used regression approach for approximating nonlinear mappings between input and target outputs. However, existing learning procedures for MoR are prone to overfitting when only limited amounts of training data are available. To address this problem, we propose a new mixture regression model, named mixture of grouped regressors (MoGR). It partitions the individual regressors in the model into a set of groups, where the parameters of the regressors within each group are encouraged to take on similar values. As the parameters for each local regressor are learned using all data within a group, they tend to be better conditioned and more robust to noise in the training data. Extensive experiments on real-world head pose and gaze data demonstrate the benefits of our proposed MoGR model. •Mixture of grouped regressors (MoGR) is proposed to tackle overfitting problems of existing Mixture of Regressors methods.•MoGR partitions the individual regressors in mixture regression model into a number of groups.•The parameters of each regressor are learned using all data within a group, rather than a cluster.•MoGR requires a small number of training data and is robust to noise.•It has shown obviously improved performance when compared with state-of-the-art nonlinear visual mapping methods.
doi_str_mv 10.1016/j.patcog.2015.10.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808077253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320315003957</els_id><sourcerecordid>1808077253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-46f9c87b3cfe0926569b383b974ea97d2c701e6e2210ab204c9903ff62f751433</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-Aw89eml9SdqmvQiy-A9WvOg5pOlrydJtapKKfntT6tnTg9-bGZgh5JpCRoGWt4dsUkHbPmNAi4iyCE_IhlaCpwXN2SnZAHCacgb8nFx4fwCgIj42ZPdqvsPsMLFd0js7T9gmDnuH3lvnEzW2iQnxTtNgtArGjkmwyZfxsxqSY8Rm7C_JWacGj1d_d0s-Hh_ed8_p_u3pZXe_T3UOdUjzsqt1JRquO4SalUVZN7ziTS1yVLVomRZAsUTGKKiGQa7rGnjXlawTsQXnW3Kz5k7Ofs7ogzwar3EY1Ih29pJWUIEQrFik-SrVznrvsJOTM0flfiQFuWwmD3LdTC6bLTTCaLtbbRhrfBl00muDo8bWONRBttb8H_ALcUB2cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808077253</pqid></control><display><type>article</type><title>Mixture of grouped regressors and its application to visual mapping</title><source>Elsevier ScienceDirect Journals</source><creator>Pan, Lili ; Saragih, Jason M. ; Chu, Wen-Sheng</creator><creatorcontrib>Pan, Lili ; Saragih, Jason M. ; Chu, Wen-Sheng</creatorcontrib><description>Mixture of regressors (MoR) is a widely used regression approach for approximating nonlinear mappings between input and target outputs. However, existing learning procedures for MoR are prone to overfitting when only limited amounts of training data are available. To address this problem, we propose a new mixture regression model, named mixture of grouped regressors (MoGR). It partitions the individual regressors in the model into a set of groups, where the parameters of the regressors within each group are encouraged to take on similar values. As the parameters for each local regressor are learned using all data within a group, they tend to be better conditioned and more robust to noise in the training data. Extensive experiments on real-world head pose and gaze data demonstrate the benefits of our proposed MoGR model. •Mixture of grouped regressors (MoGR) is proposed to tackle overfitting problems of existing Mixture of Regressors methods.•MoGR partitions the individual regressors in mixture regression model into a number of groups.•The parameters of each regressor are learned using all data within a group, rather than a cluster.•MoGR requires a small number of training data and is robust to noise.•It has shown obviously improved performance when compared with state-of-the-art nonlinear visual mapping methods.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2015.10.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; EM algorithm ; Group partition ; Learning ; Mapping ; Mathematical models ; Mixture of regressors ; Pattern recognition ; Regression ; Training ; Visual</subject><ispartof>Pattern recognition, 2016-05, Vol.53, p.184-194</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-46f9c87b3cfe0926569b383b974ea97d2c701e6e2210ab204c9903ff62f751433</citedby><cites>FETCH-LOGICAL-c409t-46f9c87b3cfe0926569b383b974ea97d2c701e6e2210ab204c9903ff62f751433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0031320315003957$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pan, Lili</creatorcontrib><creatorcontrib>Saragih, Jason M.</creatorcontrib><creatorcontrib>Chu, Wen-Sheng</creatorcontrib><title>Mixture of grouped regressors and its application to visual mapping</title><title>Pattern recognition</title><description>Mixture of regressors (MoR) is a widely used regression approach for approximating nonlinear mappings between input and target outputs. However, existing learning procedures for MoR are prone to overfitting when only limited amounts of training data are available. To address this problem, we propose a new mixture regression model, named mixture of grouped regressors (MoGR). It partitions the individual regressors in the model into a set of groups, where the parameters of the regressors within each group are encouraged to take on similar values. As the parameters for each local regressor are learned using all data within a group, they tend to be better conditioned and more robust to noise in the training data. Extensive experiments on real-world head pose and gaze data demonstrate the benefits of our proposed MoGR model. •Mixture of grouped regressors (MoGR) is proposed to tackle overfitting problems of existing Mixture of Regressors methods.•MoGR partitions the individual regressors in mixture regression model into a number of groups.•The parameters of each regressor are learned using all data within a group, rather than a cluster.•MoGR requires a small number of training data and is robust to noise.•It has shown obviously improved performance when compared with state-of-the-art nonlinear visual mapping methods.</description><subject>Approximation</subject><subject>EM algorithm</subject><subject>Group partition</subject><subject>Learning</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Mixture of regressors</subject><subject>Pattern recognition</subject><subject>Regression</subject><subject>Training</subject><subject>Visual</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-Aw89eml9SdqmvQiy-A9WvOg5pOlrydJtapKKfntT6tnTg9-bGZgh5JpCRoGWt4dsUkHbPmNAi4iyCE_IhlaCpwXN2SnZAHCacgb8nFx4fwCgIj42ZPdqvsPsMLFd0js7T9gmDnuH3lvnEzW2iQnxTtNgtArGjkmwyZfxsxqSY8Rm7C_JWacGj1d_d0s-Hh_ed8_p_u3pZXe_T3UOdUjzsqt1JRquO4SalUVZN7ziTS1yVLVomRZAsUTGKKiGQa7rGnjXlawTsQXnW3Kz5k7Ofs7ogzwar3EY1Ih29pJWUIEQrFik-SrVznrvsJOTM0flfiQFuWwmD3LdTC6bLTTCaLtbbRhrfBl00muDo8bWONRBttb8H_ALcUB2cg</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Pan, Lili</creator><creator>Saragih, Jason M.</creator><creator>Chu, Wen-Sheng</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160501</creationdate><title>Mixture of grouped regressors and its application to visual mapping</title><author>Pan, Lili ; Saragih, Jason M. ; Chu, Wen-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-46f9c87b3cfe0926569b383b974ea97d2c701e6e2210ab204c9903ff62f751433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>EM algorithm</topic><topic>Group partition</topic><topic>Learning</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Mixture of regressors</topic><topic>Pattern recognition</topic><topic>Regression</topic><topic>Training</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Lili</creatorcontrib><creatorcontrib>Saragih, Jason M.</creatorcontrib><creatorcontrib>Chu, Wen-Sheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Lili</au><au>Saragih, Jason M.</au><au>Chu, Wen-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixture of grouped regressors and its application to visual mapping</atitle><jtitle>Pattern recognition</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>53</volume><spage>184</spage><epage>194</epage><pages>184-194</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><abstract>Mixture of regressors (MoR) is a widely used regression approach for approximating nonlinear mappings between input and target outputs. However, existing learning procedures for MoR are prone to overfitting when only limited amounts of training data are available. To address this problem, we propose a new mixture regression model, named mixture of grouped regressors (MoGR). It partitions the individual regressors in the model into a set of groups, where the parameters of the regressors within each group are encouraged to take on similar values. As the parameters for each local regressor are learned using all data within a group, they tend to be better conditioned and more robust to noise in the training data. Extensive experiments on real-world head pose and gaze data demonstrate the benefits of our proposed MoGR model. •Mixture of grouped regressors (MoGR) is proposed to tackle overfitting problems of existing Mixture of Regressors methods.•MoGR partitions the individual regressors in mixture regression model into a number of groups.•The parameters of each regressor are learned using all data within a group, rather than a cluster.•MoGR requires a small number of training data and is robust to noise.•It has shown obviously improved performance when compared with state-of-the-art nonlinear visual mapping methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2015.10.016</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2016-05, Vol.53, p.184-194
issn 0031-3203
1873-5142
language eng
recordid cdi_proquest_miscellaneous_1808077253
source Elsevier ScienceDirect Journals
subjects Approximation
EM algorithm
Group partition
Learning
Mapping
Mathematical models
Mixture of regressors
Pattern recognition
Regression
Training
Visual
title Mixture of grouped regressors and its application to visual mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixture%20of%20grouped%20regressors%20and%20its%20application%20to%20visual%20mapping&rft.jtitle=Pattern%20recognition&rft.au=Pan,%20Lili&rft.date=2016-05-01&rft.volume=53&rft.spage=184&rft.epage=194&rft.pages=184-194&rft.issn=0031-3203&rft.eissn=1873-5142&rft_id=info:doi/10.1016/j.patcog.2015.10.016&rft_dat=%3Cproquest_cross%3E1808077253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808077253&rft_id=info:pmid/&rft_els_id=S0031320315003957&rfr_iscdi=true