Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions
Given optimal interpolation points sigma sub(1),..., sigma sub( r ), the \(\mathcal {H}_{2}\)-optimal reduced order model of order r can be obtained for a linear time-invariant system of order n>>r by simple projection (whereas it is not a trivial task to find those interpolation points). Our...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 2015-10, Vol.41 (5), p.1231-1253 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1253 |
---|---|
container_issue | 5 |
container_start_page | 1231 |
container_title | Advances in computational mathematics |
container_volume | 41 |
creator | Benner, Peter Grundel, Sara Hornung, Nils |
description | Given optimal interpolation points sigma sub(1),..., sigma sub( r ), the \(\mathcal {H}_{2}\)-optimal reduced order model of order r can be obtained for a linear time-invariant system of order n>>r by simple projection (whereas it is not a trivial task to find those interpolation points). Our approach to linear time-invariant systems depending on parameters \(p\in \mathbb {R}d}\) is to approximate their parametric dependence as a so-called metamodel, which in turn allows us to set up the corresponding parametrized reduced order models. The construction of the metamodel we suggest involves the coefficients of the characteristic polynomial and radial basis function interpolation, and thus allows for an accurate and efficient approximation of sigma sub(1)(p),..., sigma sub( r )(p). As the computation of the projection still includes large system solves, this metamodel is not sufficient to construct a fast and truly parametric reduced system. Setting up a medium-size model without extra cost, we present a possible answer to this. We illustrate the proposed method with several numerical examples. |
doi_str_mv | 10.1007/s10444-015-9410-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808077157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808077157</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18080771573</originalsourceid><addsrcrecordid>eNqVj8FOwzAQRC1EJQrlA7jtsRwM65LUyRmBeuTAMVK0JC41smPYtcWh6r8TIX6A04zmjUYapW4M3hlEey8Gq6rSaGrdVga1PVNLU9uNbuf8fPZoWm3NtrlQlyIfiNhubb1U7oWYosvsB4hpdAESj46B3ViG7NME3z4fgEAihQDduouUDwMFOO5O_XFz6m61Y04MRfz0Dkyjn-EbiRfYl-l3Q1Zqsacg7vpPr9T6-en1cac_OX0VJ7mPXgYXAk0uFelNgw1aOx94-Ef1B-DWUWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808077157</pqid></control><display><type>article</type><title>Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Benner, Peter ; Grundel, Sara ; Hornung, Nils</creator><creatorcontrib>Benner, Peter ; Grundel, Sara ; Hornung, Nils</creatorcontrib><description>Given optimal interpolation points sigma sub(1),..., sigma sub( r ), the \(\mathcal {H}_{2}\)-optimal reduced order model of order r can be obtained for a linear time-invariant system of order n>>r by simple projection (whereas it is not a trivial task to find those interpolation points). Our approach to linear time-invariant systems depending on parameters \(p\in \mathbb {R}d}\) is to approximate their parametric dependence as a so-called metamodel, which in turn allows us to set up the corresponding parametrized reduced order models. The construction of the metamodel we suggest involves the coefficients of the characteristic polynomial and radial basis function interpolation, and thus allows for an accurate and efficient approximation of sigma sub(1)(p),..., sigma sub( r )(p). As the computation of the projection still includes large system solves, this metamodel is not sufficient to construct a fast and truly parametric reduced system. Setting up a medium-size model without extra cost, we present a possible answer to this. We illustrate the proposed method with several numerical examples.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-015-9410-7</identifier><language>eng</language><subject>Approximation ; Computation ; Interpolation ; Mathematical models ; Metamodels ; Projection ; Radial basis function ; Reduced order models</subject><ispartof>Advances in computational mathematics, 2015-10, Vol.41 (5), p.1231-1253</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Benner, Peter</creatorcontrib><creatorcontrib>Grundel, Sara</creatorcontrib><creatorcontrib>Hornung, Nils</creatorcontrib><title>Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions</title><title>Advances in computational mathematics</title><description>Given optimal interpolation points sigma sub(1),..., sigma sub( r ), the \(\mathcal {H}_{2}\)-optimal reduced order model of order r can be obtained for a linear time-invariant system of order n>>r by simple projection (whereas it is not a trivial task to find those interpolation points). Our approach to linear time-invariant systems depending on parameters \(p\in \mathbb {R}d}\) is to approximate their parametric dependence as a so-called metamodel, which in turn allows us to set up the corresponding parametrized reduced order models. The construction of the metamodel we suggest involves the coefficients of the characteristic polynomial and radial basis function interpolation, and thus allows for an accurate and efficient approximation of sigma sub(1)(p),..., sigma sub( r )(p). As the computation of the projection still includes large system solves, this metamodel is not sufficient to construct a fast and truly parametric reduced system. Setting up a medium-size model without extra cost, we present a possible answer to this. We illustrate the proposed method with several numerical examples.</description><subject>Approximation</subject><subject>Computation</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Metamodels</subject><subject>Projection</subject><subject>Radial basis function</subject><subject>Reduced order models</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVj8FOwzAQRC1EJQrlA7jtsRwM65LUyRmBeuTAMVK0JC41smPYtcWh6r8TIX6A04zmjUYapW4M3hlEey8Gq6rSaGrdVga1PVNLU9uNbuf8fPZoWm3NtrlQlyIfiNhubb1U7oWYosvsB4hpdAESj46B3ViG7NME3z4fgEAihQDduouUDwMFOO5O_XFz6m61Y04MRfz0Dkyjn-EbiRfYl-l3Q1Zqsacg7vpPr9T6-en1cac_OX0VJ7mPXgYXAk0uFelNgw1aOx94-Ef1B-DWUWo</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Benner, Peter</creator><creator>Grundel, Sara</creator><creator>Hornung, Nils</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151001</creationdate><title>Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions</title><author>Benner, Peter ; Grundel, Sara ; Hornung, Nils</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18080771573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Computation</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Metamodels</topic><topic>Projection</topic><topic>Radial basis function</topic><topic>Reduced order models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benner, Peter</creatorcontrib><creatorcontrib>Grundel, Sara</creatorcontrib><creatorcontrib>Hornung, Nils</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benner, Peter</au><au>Grundel, Sara</au><au>Hornung, Nils</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions</atitle><jtitle>Advances in computational mathematics</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>41</volume><issue>5</issue><spage>1231</spage><epage>1253</epage><pages>1231-1253</pages><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>Given optimal interpolation points sigma sub(1),..., sigma sub( r ), the \(\mathcal {H}_{2}\)-optimal reduced order model of order r can be obtained for a linear time-invariant system of order n>>r by simple projection (whereas it is not a trivial task to find those interpolation points). Our approach to linear time-invariant systems depending on parameters \(p\in \mathbb {R}d}\) is to approximate their parametric dependence as a so-called metamodel, which in turn allows us to set up the corresponding parametrized reduced order models. The construction of the metamodel we suggest involves the coefficients of the characteristic polynomial and radial basis function interpolation, and thus allows for an accurate and efficient approximation of sigma sub(1)(p),..., sigma sub( r )(p). As the computation of the projection still includes large system solves, this metamodel is not sufficient to construct a fast and truly parametric reduced system. Setting up a medium-size model without extra cost, we present a possible answer to this. We illustrate the proposed method with several numerical examples.</abstract><doi>10.1007/s10444-015-9410-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1019-7168 |
ispartof | Advances in computational mathematics, 2015-10, Vol.41 (5), p.1231-1253 |
issn | 1019-7168 1572-9044 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808077157 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Computation Interpolation Mathematical models Metamodels Projection Radial basis function Reduced order models |
title | Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20model%20order%20reduction%20with%20a%20small%20%5C(%5Cmathcal%20%7BH%7D_%7B2%7D%5C)-error%20using%20radial%20basis%20functions&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Benner,%20Peter&rft.date=2015-10-01&rft.volume=41&rft.issue=5&rft.spage=1231&rft.epage=1253&rft.pages=1231-1253&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-015-9410-7&rft_dat=%3Cproquest%3E1808077157%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808077157&rft_id=info:pmid/&rfr_iscdi=true |