Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions

Given optimal interpolation points sigma sub(1),..., sigma sub( r ), the \(\mathcal {H}_{2}\)-optimal reduced order model of order r can be obtained for a linear time-invariant system of order n>>r by simple projection (whereas it is not a trivial task to find those interpolation points). Our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2015-10, Vol.41 (5), p.1231-1253
Hauptverfasser: Benner, Peter, Grundel, Sara, Hornung, Nils
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1253
container_issue 5
container_start_page 1231
container_title Advances in computational mathematics
container_volume 41
creator Benner, Peter
Grundel, Sara
Hornung, Nils
description Given optimal interpolation points sigma sub(1),..., sigma sub( r ), the \(\mathcal {H}_{2}\)-optimal reduced order model of order r can be obtained for a linear time-invariant system of order n>>r by simple projection (whereas it is not a trivial task to find those interpolation points). Our approach to linear time-invariant systems depending on parameters \(p\in \mathbb {R}d}\) is to approximate their parametric dependence as a so-called metamodel, which in turn allows us to set up the corresponding parametrized reduced order models. The construction of the metamodel we suggest involves the coefficients of the characteristic polynomial and radial basis function interpolation, and thus allows for an accurate and efficient approximation of sigma sub(1)(p),..., sigma sub( r )(p). As the computation of the projection still includes large system solves, this metamodel is not sufficient to construct a fast and truly parametric reduced system. Setting up a medium-size model without extra cost, we present a possible answer to this. We illustrate the proposed method with several numerical examples.
doi_str_mv 10.1007/s10444-015-9410-7
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808077157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808077157</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18080771573</originalsourceid><addsrcrecordid>eNqVj8FOwzAQRC1EJQrlA7jtsRwM65LUyRmBeuTAMVK0JC41smPYtcWh6r8TIX6A04zmjUYapW4M3hlEey8Gq6rSaGrdVga1PVNLU9uNbuf8fPZoWm3NtrlQlyIfiNhubb1U7oWYosvsB4hpdAESj46B3ViG7NME3z4fgEAihQDduouUDwMFOO5O_XFz6m61Y04MRfz0Dkyjn-EbiRfYl-l3Q1Zqsacg7vpPr9T6-en1cac_OX0VJ7mPXgYXAk0uFelNgw1aOx94-Ef1B-DWUWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808077157</pqid></control><display><type>article</type><title>Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Benner, Peter ; Grundel, Sara ; Hornung, Nils</creator><creatorcontrib>Benner, Peter ; Grundel, Sara ; Hornung, Nils</creatorcontrib><description>Given optimal interpolation points sigma sub(1),..., sigma sub( r ), the \(\mathcal {H}_{2}\)-optimal reduced order model of order r can be obtained for a linear time-invariant system of order n&gt;&gt;r by simple projection (whereas it is not a trivial task to find those interpolation points). Our approach to linear time-invariant systems depending on parameters \(p\in \mathbb {R}d}\) is to approximate their parametric dependence as a so-called metamodel, which in turn allows us to set up the corresponding parametrized reduced order models. The construction of the metamodel we suggest involves the coefficients of the characteristic polynomial and radial basis function interpolation, and thus allows for an accurate and efficient approximation of sigma sub(1)(p),..., sigma sub( r )(p). As the computation of the projection still includes large system solves, this metamodel is not sufficient to construct a fast and truly parametric reduced system. Setting up a medium-size model without extra cost, we present a possible answer to this. We illustrate the proposed method with several numerical examples.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-015-9410-7</identifier><language>eng</language><subject>Approximation ; Computation ; Interpolation ; Mathematical models ; Metamodels ; Projection ; Radial basis function ; Reduced order models</subject><ispartof>Advances in computational mathematics, 2015-10, Vol.41 (5), p.1231-1253</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Benner, Peter</creatorcontrib><creatorcontrib>Grundel, Sara</creatorcontrib><creatorcontrib>Hornung, Nils</creatorcontrib><title>Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions</title><title>Advances in computational mathematics</title><description>Given optimal interpolation points sigma sub(1),..., sigma sub( r ), the \(\mathcal {H}_{2}\)-optimal reduced order model of order r can be obtained for a linear time-invariant system of order n&gt;&gt;r by simple projection (whereas it is not a trivial task to find those interpolation points). Our approach to linear time-invariant systems depending on parameters \(p\in \mathbb {R}d}\) is to approximate their parametric dependence as a so-called metamodel, which in turn allows us to set up the corresponding parametrized reduced order models. The construction of the metamodel we suggest involves the coefficients of the characteristic polynomial and radial basis function interpolation, and thus allows for an accurate and efficient approximation of sigma sub(1)(p),..., sigma sub( r )(p). As the computation of the projection still includes large system solves, this metamodel is not sufficient to construct a fast and truly parametric reduced system. Setting up a medium-size model without extra cost, we present a possible answer to this. We illustrate the proposed method with several numerical examples.</description><subject>Approximation</subject><subject>Computation</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Metamodels</subject><subject>Projection</subject><subject>Radial basis function</subject><subject>Reduced order models</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVj8FOwzAQRC1EJQrlA7jtsRwM65LUyRmBeuTAMVK0JC41smPYtcWh6r8TIX6A04zmjUYapW4M3hlEey8Gq6rSaGrdVga1PVNLU9uNbuf8fPZoWm3NtrlQlyIfiNhubb1U7oWYosvsB4hpdAESj46B3ViG7NME3z4fgEAihQDduouUDwMFOO5O_XFz6m61Y04MRfz0Dkyjn-EbiRfYl-l3Q1Zqsacg7vpPr9T6-en1cac_OX0VJ7mPXgYXAk0uFelNgw1aOx94-Ef1B-DWUWo</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Benner, Peter</creator><creator>Grundel, Sara</creator><creator>Hornung, Nils</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151001</creationdate><title>Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions</title><author>Benner, Peter ; Grundel, Sara ; Hornung, Nils</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18080771573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Computation</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Metamodels</topic><topic>Projection</topic><topic>Radial basis function</topic><topic>Reduced order models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benner, Peter</creatorcontrib><creatorcontrib>Grundel, Sara</creatorcontrib><creatorcontrib>Hornung, Nils</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benner, Peter</au><au>Grundel, Sara</au><au>Hornung, Nils</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions</atitle><jtitle>Advances in computational mathematics</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>41</volume><issue>5</issue><spage>1231</spage><epage>1253</epage><pages>1231-1253</pages><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>Given optimal interpolation points sigma sub(1),..., sigma sub( r ), the \(\mathcal {H}_{2}\)-optimal reduced order model of order r can be obtained for a linear time-invariant system of order n&gt;&gt;r by simple projection (whereas it is not a trivial task to find those interpolation points). Our approach to linear time-invariant systems depending on parameters \(p\in \mathbb {R}d}\) is to approximate their parametric dependence as a so-called metamodel, which in turn allows us to set up the corresponding parametrized reduced order models. The construction of the metamodel we suggest involves the coefficients of the characteristic polynomial and radial basis function interpolation, and thus allows for an accurate and efficient approximation of sigma sub(1)(p),..., sigma sub( r )(p). As the computation of the projection still includes large system solves, this metamodel is not sufficient to construct a fast and truly parametric reduced system. Setting up a medium-size model without extra cost, we present a possible answer to this. We illustrate the proposed method with several numerical examples.</abstract><doi>10.1007/s10444-015-9410-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 1019-7168
ispartof Advances in computational mathematics, 2015-10, Vol.41 (5), p.1231-1253
issn 1019-7168
1572-9044
language eng
recordid cdi_proquest_miscellaneous_1808077157
source SpringerLink Journals - AutoHoldings
subjects Approximation
Computation
Interpolation
Mathematical models
Metamodels
Projection
Radial basis function
Reduced order models
title Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20model%20order%20reduction%20with%20a%20small%20%5C(%5Cmathcal%20%7BH%7D_%7B2%7D%5C)-error%20using%20radial%20basis%20functions&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Benner,%20Peter&rft.date=2015-10-01&rft.volume=41&rft.issue=5&rft.spage=1231&rft.epage=1253&rft.pages=1231-1253&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-015-9410-7&rft_dat=%3Cproquest%3E1808077157%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808077157&rft_id=info:pmid/&rfr_iscdi=true