Neutron-Physical Characteristics of a Neutron Source for the Production of Radioactive Isotopes Based on the Interaction of Electrons with Liquid Gallium
The nuclear-physical characteristics obtained for a gallium target in a series of experiments using the time-of-flight method, the method of threshold indicators and a spectrometer based on a 3 He proportional counter on the IREN setup (JINR, Dubna) are presented. The absolute values of the energy s...
Gespeichert in:
Veröffentlicht in: | Atomic energy (New York, N.Y.) N.Y.), 2014-08, Vol.116 (4), p.252-257 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | 4 |
container_start_page | 252 |
container_title | Atomic energy (New York, N.Y.) |
container_volume | 116 |
creator | Mitrofanov, K. V. Egorov, A. S. Piksaikin, V. M. Goverdovskii, A. A. Zolotarev, K. I. Samylin, B. F. Gremyachkin, D. E. Sedyshev, P. V. Zontikov, A. O. Zeinalov, Sh. S. Shvetsov, V. N. |
description | The nuclear-physical characteristics obtained for a gallium target in a series of experiments using the time-of-flight method, the method of threshold indicators and a spectrometer based on a
3
He proportional counter on the IREN setup (JINR, Dubna) are presented. The absolute values of the energy spectra of leakage neutrons in the energy range from 10 keV to 15 MeV were measured. The activation method was used to measure the neutron flux density on the surface of a gallium target: (2.882 ± 0.098) · 10
8
sec
–1
· cm
–2
. The integral yield of neutrons obtained from the gallium target on the basis of these data was 1.54 · 10
14
sec
–1
with average current 4 mA. The time dependence of the activation level of the gallium target was measured. It was shown as a result of the analysis that the background level is reached on the surface of the irradiated gallium target in 5 days. |
doi_str_mv | 10.1007/s10512-014-9850-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808076339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A385260290</galeid><sourcerecordid>A385260290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-41e7e01b766a2cfd20cdc4c5070eaaff76fc0be47d39a40cd6ee791e05f8a8c23</originalsourceid><addsrcrecordid>eNqFkt9qFDEUhwdRsFYfwLuAN3ox9SQzkz-XdantwqKl1euQZk52U2Yn2yRTbd_Et22GLWIFkVwk5Hzfj-RwquothSMKID4mCh1lNdC2VrKD-v5ZdUA70dSSQfe8nIE3dcs6-bJ6ldI1ACiu5EH16wtOOYaxPt_cJW_NQBYbE43NGH3K3iYSHDHkkSKXYYoWiQuR5A2S8xj6yWZfKgW7ML0PRfW3SJYp5LDDRD6ZhD0pwMwvx5JrfgsnA9o5NpEfPm_Iyt9MvienZhj8tH1dvXBmSPjmcT-svn8--bY4q1dfT5eL41VtWxC5bikKBHolODfMup6B7W1rOxCAxjgnuLNwha3oG2XaUuSIQlGEzkkjLWsOq_f73F0MNxOmrLc-WRwGM2KYkqYSJAjeNOr_qFCgWq66OfXdX-h1ad1YPlIoCbThDJpCHe2ptRlQ-9GFXNpTVo9bb8OIzpf740Z2jANTUIQPT4TCZPyZ12ZKSS8vL56ydM_aGFKK6PQu-q2Jd5qCnodG74dGl6HR89Do--KwvZMKO64x_vHsf0oPu7XGOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780136203</pqid></control><display><type>article</type><title>Neutron-Physical Characteristics of a Neutron Source for the Production of Radioactive Isotopes Based on the Interaction of Electrons with Liquid Gallium</title><source>Springer Nature - Complete Springer Journals</source><creator>Mitrofanov, K. V. ; Egorov, A. S. ; Piksaikin, V. M. ; Goverdovskii, A. A. ; Zolotarev, K. I. ; Samylin, B. F. ; Gremyachkin, D. E. ; Sedyshev, P. V. ; Zontikov, A. O. ; Zeinalov, Sh. S. ; Shvetsov, V. N.</creator><creatorcontrib>Mitrofanov, K. V. ; Egorov, A. S. ; Piksaikin, V. M. ; Goverdovskii, A. A. ; Zolotarev, K. I. ; Samylin, B. F. ; Gremyachkin, D. E. ; Sedyshev, P. V. ; Zontikov, A. O. ; Zeinalov, Sh. S. ; Shvetsov, V. N.</creatorcontrib><description>The nuclear-physical characteristics obtained for a gallium target in a series of experiments using the time-of-flight method, the method of threshold indicators and a spectrometer based on a
3
He proportional counter on the IREN setup (JINR, Dubna) are presented. The absolute values of the energy spectra of leakage neutrons in the energy range from 10 keV to 15 MeV were measured. The activation method was used to measure the neutron flux density on the surface of a gallium target: (2.882 ± 0.098) · 10
8
sec
–1
· cm
–2
. The integral yield of neutrons obtained from the gallium target on the basis of these data was 1.54 · 10
14
sec
–1
with average current 4 mA. The time dependence of the activation level of the gallium target was measured. It was shown as a result of the analysis that the background level is reached on the surface of the irradiated gallium target in 5 days.</description><identifier>ISSN: 1063-4258</identifier><identifier>EISSN: 1573-8205</identifier><identifier>DOI: 10.1007/s10512-014-9850-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Activation ; Energy ; Energy measurement ; Gallium ; Hadrons ; Heavy Ions ; Isotopes ; Leakage ; Liquids ; Neutron sources ; Neutrons ; Nuclear Chemistry ; Nuclear Energy ; Nuclear Physics ; Nuclear power plants ; Nuclear research ; Physics ; Physics and Astronomy ; Production planning ; Radiation ; Radioisotopes ; Spectrometers ; Spectrum analysis ; Studies ; Surface chemistry ; Time dependence</subject><ispartof>Atomic energy (New York, N.Y.), 2014-08, Vol.116 (4), p.252-257</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c407t-41e7e01b766a2cfd20cdc4c5070eaaff76fc0be47d39a40cd6ee791e05f8a8c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10512-014-9850-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10512-014-9850-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Mitrofanov, K. V.</creatorcontrib><creatorcontrib>Egorov, A. S.</creatorcontrib><creatorcontrib>Piksaikin, V. M.</creatorcontrib><creatorcontrib>Goverdovskii, A. A.</creatorcontrib><creatorcontrib>Zolotarev, K. I.</creatorcontrib><creatorcontrib>Samylin, B. F.</creatorcontrib><creatorcontrib>Gremyachkin, D. E.</creatorcontrib><creatorcontrib>Sedyshev, P. V.</creatorcontrib><creatorcontrib>Zontikov, A. O.</creatorcontrib><creatorcontrib>Zeinalov, Sh. S.</creatorcontrib><creatorcontrib>Shvetsov, V. N.</creatorcontrib><title>Neutron-Physical Characteristics of a Neutron Source for the Production of Radioactive Isotopes Based on the Interaction of Electrons with Liquid Gallium</title><title>Atomic energy (New York, N.Y.)</title><addtitle>At Energy</addtitle><description>The nuclear-physical characteristics obtained for a gallium target in a series of experiments using the time-of-flight method, the method of threshold indicators and a spectrometer based on a
3
He proportional counter on the IREN setup (JINR, Dubna) are presented. The absolute values of the energy spectra of leakage neutrons in the energy range from 10 keV to 15 MeV were measured. The activation method was used to measure the neutron flux density on the surface of a gallium target: (2.882 ± 0.098) · 10
8
sec
–1
· cm
–2
. The integral yield of neutrons obtained from the gallium target on the basis of these data was 1.54 · 10
14
sec
–1
with average current 4 mA. The time dependence of the activation level of the gallium target was measured. It was shown as a result of the analysis that the background level is reached on the surface of the irradiated gallium target in 5 days.</description><subject>Activation</subject><subject>Energy</subject><subject>Energy measurement</subject><subject>Gallium</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Isotopes</subject><subject>Leakage</subject><subject>Liquids</subject><subject>Neutron sources</subject><subject>Neutrons</subject><subject>Nuclear Chemistry</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Nuclear power plants</subject><subject>Nuclear research</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Production planning</subject><subject>Radiation</subject><subject>Radioisotopes</subject><subject>Spectrometers</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Surface chemistry</subject><subject>Time dependence</subject><issn>1063-4258</issn><issn>1573-8205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkt9qFDEUhwdRsFYfwLuAN3ox9SQzkz-XdantwqKl1euQZk52U2Yn2yRTbd_Et22GLWIFkVwk5Hzfj-RwquothSMKID4mCh1lNdC2VrKD-v5ZdUA70dSSQfe8nIE3dcs6-bJ6ldI1ACiu5EH16wtOOYaxPt_cJW_NQBYbE43NGH3K3iYSHDHkkSKXYYoWiQuR5A2S8xj6yWZfKgW7ML0PRfW3SJYp5LDDRD6ZhD0pwMwvx5JrfgsnA9o5NpEfPm_Iyt9MvienZhj8tH1dvXBmSPjmcT-svn8--bY4q1dfT5eL41VtWxC5bikKBHolODfMup6B7W1rOxCAxjgnuLNwha3oG2XaUuSIQlGEzkkjLWsOq_f73F0MNxOmrLc-WRwGM2KYkqYSJAjeNOr_qFCgWq66OfXdX-h1ad1YPlIoCbThDJpCHe2ptRlQ-9GFXNpTVo9bb8OIzpf740Z2jANTUIQPT4TCZPyZ12ZKSS8vL56ydM_aGFKK6PQu-q2Jd5qCnodG74dGl6HR89Do--KwvZMKO64x_vHsf0oPu7XGOA</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Mitrofanov, K. V.</creator><creator>Egorov, A. S.</creator><creator>Piksaikin, V. M.</creator><creator>Goverdovskii, A. A.</creator><creator>Zolotarev, K. I.</creator><creator>Samylin, B. F.</creator><creator>Gremyachkin, D. E.</creator><creator>Sedyshev, P. V.</creator><creator>Zontikov, A. O.</creator><creator>Zeinalov, Sh. S.</creator><creator>Shvetsov, V. N.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20140801</creationdate><title>Neutron-Physical Characteristics of a Neutron Source for the Production of Radioactive Isotopes Based on the Interaction of Electrons with Liquid Gallium</title><author>Mitrofanov, K. V. ; Egorov, A. S. ; Piksaikin, V. M. ; Goverdovskii, A. A. ; Zolotarev, K. I. ; Samylin, B. F. ; Gremyachkin, D. E. ; Sedyshev, P. V. ; Zontikov, A. O. ; Zeinalov, Sh. S. ; Shvetsov, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-41e7e01b766a2cfd20cdc4c5070eaaff76fc0be47d39a40cd6ee791e05f8a8c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation</topic><topic>Energy</topic><topic>Energy measurement</topic><topic>Gallium</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Isotopes</topic><topic>Leakage</topic><topic>Liquids</topic><topic>Neutron sources</topic><topic>Neutrons</topic><topic>Nuclear Chemistry</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Nuclear power plants</topic><topic>Nuclear research</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Production planning</topic><topic>Radiation</topic><topic>Radioisotopes</topic><topic>Spectrometers</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Surface chemistry</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitrofanov, K. V.</creatorcontrib><creatorcontrib>Egorov, A. S.</creatorcontrib><creatorcontrib>Piksaikin, V. M.</creatorcontrib><creatorcontrib>Goverdovskii, A. A.</creatorcontrib><creatorcontrib>Zolotarev, K. I.</creatorcontrib><creatorcontrib>Samylin, B. F.</creatorcontrib><creatorcontrib>Gremyachkin, D. E.</creatorcontrib><creatorcontrib>Sedyshev, P. V.</creatorcontrib><creatorcontrib>Zontikov, A. O.</creatorcontrib><creatorcontrib>Zeinalov, Sh. S.</creatorcontrib><creatorcontrib>Shvetsov, V. N.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Atomic energy (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitrofanov, K. V.</au><au>Egorov, A. S.</au><au>Piksaikin, V. M.</au><au>Goverdovskii, A. A.</au><au>Zolotarev, K. I.</au><au>Samylin, B. F.</au><au>Gremyachkin, D. E.</au><au>Sedyshev, P. V.</au><au>Zontikov, A. O.</au><au>Zeinalov, Sh. S.</au><au>Shvetsov, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutron-Physical Characteristics of a Neutron Source for the Production of Radioactive Isotopes Based on the Interaction of Electrons with Liquid Gallium</atitle><jtitle>Atomic energy (New York, N.Y.)</jtitle><stitle>At Energy</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>116</volume><issue>4</issue><spage>252</spage><epage>257</epage><pages>252-257</pages><issn>1063-4258</issn><eissn>1573-8205</eissn><abstract>The nuclear-physical characteristics obtained for a gallium target in a series of experiments using the time-of-flight method, the method of threshold indicators and a spectrometer based on a
3
He proportional counter on the IREN setup (JINR, Dubna) are presented. The absolute values of the energy spectra of leakage neutrons in the energy range from 10 keV to 15 MeV were measured. The activation method was used to measure the neutron flux density on the surface of a gallium target: (2.882 ± 0.098) · 10
8
sec
–1
· cm
–2
. The integral yield of neutrons obtained from the gallium target on the basis of these data was 1.54 · 10
14
sec
–1
with average current 4 mA. The time dependence of the activation level of the gallium target was measured. It was shown as a result of the analysis that the background level is reached on the surface of the irradiated gallium target in 5 days.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10512-014-9850-z</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-4258 |
ispartof | Atomic energy (New York, N.Y.), 2014-08, Vol.116 (4), p.252-257 |
issn | 1063-4258 1573-8205 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808076339 |
source | Springer Nature - Complete Springer Journals |
subjects | Activation Energy Energy measurement Gallium Hadrons Heavy Ions Isotopes Leakage Liquids Neutron sources Neutrons Nuclear Chemistry Nuclear Energy Nuclear Physics Nuclear power plants Nuclear research Physics Physics and Astronomy Production planning Radiation Radioisotopes Spectrometers Spectrum analysis Studies Surface chemistry Time dependence |
title | Neutron-Physical Characteristics of a Neutron Source for the Production of Radioactive Isotopes Based on the Interaction of Electrons with Liquid Gallium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutron-Physical%20Characteristics%20of%20a%20Neutron%20Source%20for%20the%20Production%20of%20Radioactive%20Isotopes%20Based%20on%20the%20Interaction%20of%20Electrons%20with%20Liquid%20Gallium&rft.jtitle=Atomic%20energy%20(New%20York,%20N.Y.)&rft.au=Mitrofanov,%20K.%20V.&rft.date=2014-08-01&rft.volume=116&rft.issue=4&rft.spage=252&rft.epage=257&rft.pages=252-257&rft.issn=1063-4258&rft.eissn=1573-8205&rft_id=info:doi/10.1007/s10512-014-9850-z&rft_dat=%3Cgale_proqu%3EA385260290%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780136203&rft_id=info:pmid/&rft_galeid=A385260290&rfr_iscdi=true |