A nonlinear decomposition and regulation method for nonlinearity characterization

Nonlinearity detection and characterization for crack-/damage-related fault evaluation/detection is a hot engineering topic. This study investigates a novel and systematic nonlinear decomposition and regulation method for nonlinearity characterization. It is shown that, using the proposed output dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2016-02, Vol.83 (3), p.1355-1377
Hauptverfasser: Jing, Xingjian, Li, Quankun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1377
container_issue 3
container_start_page 1355
container_title Nonlinear dynamics
container_volume 83
creator Jing, Xingjian
Li, Quankun
description Nonlinearity detection and characterization for crack-/damage-related fault evaluation/detection is a hot engineering topic. This study investigates a novel and systematic nonlinear decomposition and regulation method for nonlinearity characterization. It is shown that, using the proposed output decomposition and regulation, the even-order nonlinearity and crack-incurred nonlinearity (not a simple even-order nonlinearity although at its initial stage) can all be effectively evaluated by the magnitude of the second-order harmonic response, and the latter is a linear function of the crack severity and can be accurately estimated with the proposed method. Theoretical analysis, example studies, finite element modeling, and experiment validation are provided to demonstrate the advantages and effectiveness of the proposed method in characterizing nonlinear dynamics incurred by initial crack or damage. The theory and methods of this study would provide a useful and alternative frequency-domain approach for nonlinear signal processing in crack/damage evaluation, nonlinearity detection and characterization, and can benefit a broad spectrum of engineering practice.
doi_str_mv 10.1007/s11071-015-2408-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808073872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808073872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-4fcd5eae3288a3f95e4783c0ad9c74feae61b3d677b6a51bc5f029e7aa816b153</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RSbLZJMdS_AJBBIXeQjabbbfsJjXZPdRf77YVCoKnYZjnfRkehK4J3BEAcZ8IAUEwEI5pDhKzEzQhXDBMC7U4RRNQNMegYHGOLlJaAwCjICfofZb54NvGOxOzytnQbUJq-ib4zPgqi245tGa_dq5fhSqrQzwmmn6b2ZWJxvYuNt978BKd1aZN7up3TtHn48PH_Bm_vj29zGev2OZE9TivbcWdcYxKaVituMuFZBZMpazI6_FSkJJVhRBlYTgpLa-BKieMkaQoCWdTdHvo3cTwNbjU665J1rWt8S4MSRMJEgSTgo7ozR90HYbox-80pVzljBZUjhQ5UDaGlKKr9SY2nYlbTUDvJOuDZD1K1jvJmo0ZesikkfVLF4_N_4d-AIO6gIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259432628</pqid></control><display><type>article</type><title>A nonlinear decomposition and regulation method for nonlinearity characterization</title><source>SpringerLink Journals</source><creator>Jing, Xingjian ; Li, Quankun</creator><creatorcontrib>Jing, Xingjian ; Li, Quankun</creatorcontrib><description>Nonlinearity detection and characterization for crack-/damage-related fault evaluation/detection is a hot engineering topic. This study investigates a novel and systematic nonlinear decomposition and regulation method for nonlinearity characterization. It is shown that, using the proposed output decomposition and regulation, the even-order nonlinearity and crack-incurred nonlinearity (not a simple even-order nonlinearity although at its initial stage) can all be effectively evaluated by the magnitude of the second-order harmonic response, and the latter is a linear function of the crack severity and can be accurately estimated with the proposed method. Theoretical analysis, example studies, finite element modeling, and experiment validation are provided to demonstrate the advantages and effectiveness of the proposed method in characterizing nonlinear dynamics incurred by initial crack or damage. The theory and methods of this study would provide a useful and alternative frequency-domain approach for nonlinear signal processing in crack/damage evaluation, nonlinearity detection and characterization, and can benefit a broad spectrum of engineering practice.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-2408-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Damage ; Damage assessment ; Damage detection ; Decomposition ; Dynamical Systems ; Engineering ; Finite element method ; Fracture mechanics ; Harmonic response ; Linear functions ; Mathematical analysis ; Mechanical Engineering ; Nonlinear dynamics ; Nonlinearity ; Original Paper ; Signal processing ; Vibration</subject><ispartof>Nonlinear dynamics, 2016-02, Vol.83 (3), p.1355-1377</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-4fcd5eae3288a3f95e4783c0ad9c74feae61b3d677b6a51bc5f029e7aa816b153</citedby><cites>FETCH-LOGICAL-c419t-4fcd5eae3288a3f95e4783c0ad9c74feae61b3d677b6a51bc5f029e7aa816b153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-015-2408-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-015-2408-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Jing, Xingjian</creatorcontrib><creatorcontrib>Li, Quankun</creatorcontrib><title>A nonlinear decomposition and regulation method for nonlinearity characterization</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Nonlinearity detection and characterization for crack-/damage-related fault evaluation/detection is a hot engineering topic. This study investigates a novel and systematic nonlinear decomposition and regulation method for nonlinearity characterization. It is shown that, using the proposed output decomposition and regulation, the even-order nonlinearity and crack-incurred nonlinearity (not a simple even-order nonlinearity although at its initial stage) can all be effectively evaluated by the magnitude of the second-order harmonic response, and the latter is a linear function of the crack severity and can be accurately estimated with the proposed method. Theoretical analysis, example studies, finite element modeling, and experiment validation are provided to demonstrate the advantages and effectiveness of the proposed method in characterizing nonlinear dynamics incurred by initial crack or damage. The theory and methods of this study would provide a useful and alternative frequency-domain approach for nonlinear signal processing in crack/damage evaluation, nonlinearity detection and characterization, and can benefit a broad spectrum of engineering practice.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Damage</subject><subject>Damage assessment</subject><subject>Damage detection</subject><subject>Decomposition</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Harmonic response</subject><subject>Linear functions</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Signal processing</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RSbLZJMdS_AJBBIXeQjabbbfsJjXZPdRf77YVCoKnYZjnfRkehK4J3BEAcZ8IAUEwEI5pDhKzEzQhXDBMC7U4RRNQNMegYHGOLlJaAwCjICfofZb54NvGOxOzytnQbUJq-ib4zPgqi245tGa_dq5fhSqrQzwmmn6b2ZWJxvYuNt978BKd1aZN7up3TtHn48PH_Bm_vj29zGev2OZE9TivbcWdcYxKaVituMuFZBZMpazI6_FSkJJVhRBlYTgpLa-BKieMkaQoCWdTdHvo3cTwNbjU665J1rWt8S4MSRMJEgSTgo7ozR90HYbox-80pVzljBZUjhQ5UDaGlKKr9SY2nYlbTUDvJOuDZD1K1jvJmo0ZesikkfVLF4_N_4d-AIO6gIQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Jing, Xingjian</creator><creator>Li, Quankun</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160201</creationdate><title>A nonlinear decomposition and regulation method for nonlinearity characterization</title><author>Jing, Xingjian ; Li, Quankun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-4fcd5eae3288a3f95e4783c0ad9c74feae61b3d677b6a51bc5f029e7aa816b153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Damage</topic><topic>Damage assessment</topic><topic>Damage detection</topic><topic>Decomposition</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Harmonic response</topic><topic>Linear functions</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Signal processing</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Xingjian</creatorcontrib><creatorcontrib>Li, Quankun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Xingjian</au><au>Li, Quankun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonlinear decomposition and regulation method for nonlinearity characterization</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>83</volume><issue>3</issue><spage>1355</spage><epage>1377</epage><pages>1355-1377</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Nonlinearity detection and characterization for crack-/damage-related fault evaluation/detection is a hot engineering topic. This study investigates a novel and systematic nonlinear decomposition and regulation method for nonlinearity characterization. It is shown that, using the proposed output decomposition and regulation, the even-order nonlinearity and crack-incurred nonlinearity (not a simple even-order nonlinearity although at its initial stage) can all be effectively evaluated by the magnitude of the second-order harmonic response, and the latter is a linear function of the crack severity and can be accurately estimated with the proposed method. Theoretical analysis, example studies, finite element modeling, and experiment validation are provided to demonstrate the advantages and effectiveness of the proposed method in characterizing nonlinear dynamics incurred by initial crack or damage. The theory and methods of this study would provide a useful and alternative frequency-domain approach for nonlinear signal processing in crack/damage evaluation, nonlinearity detection and characterization, and can benefit a broad spectrum of engineering practice.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-2408-3</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2016-02, Vol.83 (3), p.1355-1377
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_1808073872
source SpringerLink Journals
subjects Automotive Engineering
Classical Mechanics
Control
Damage
Damage assessment
Damage detection
Decomposition
Dynamical Systems
Engineering
Finite element method
Fracture mechanics
Harmonic response
Linear functions
Mathematical analysis
Mechanical Engineering
Nonlinear dynamics
Nonlinearity
Original Paper
Signal processing
Vibration
title A nonlinear decomposition and regulation method for nonlinearity characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonlinear%20decomposition%20and%20regulation%20method%20for%20nonlinearity%20characterization&rft.jtitle=Nonlinear%20dynamics&rft.au=Jing,%20Xingjian&rft.date=2016-02-01&rft.volume=83&rft.issue=3&rft.spage=1355&rft.epage=1377&rft.pages=1355-1377&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-2408-3&rft_dat=%3Cproquest_cross%3E1808073872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259432628&rft_id=info:pmid/&rfr_iscdi=true