Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine

Support Vector Machine (SVM) is one of the important stellar spectral classification methods, and it is widely used in practice. But its classification efficiencies cannot be greatly improved because it does not take the class distribution into consideration. In view of this, a modified SVM named Mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of astrophysics and astronomy 2016-06, Vol.37 (2), p.1-6, Article 9
1. Verfasser: Zhong-Bao, Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 2
container_start_page 1
container_title Journal of astrophysics and astronomy
container_volume 37
creator Zhong-Bao, Liu
description Support Vector Machine (SVM) is one of the important stellar spectral classification methods, and it is widely used in practice. But its classification efficiencies cannot be greatly improved because it does not take the class distribution into consideration. In view of this, a modified SVM named Minimum within-class and Maximum between-class scatter Support Vector Machine (MMSVM) is constructed to deal with the above problem. MMSVM merges the advantages of Fisher’s Discriminant Analysis (FDA) and SVM, and the comparative experiments on the Sloan Digital Sky Survey (SDSS) show that MMSVM performs better than SVM.
doi_str_mv 10.1007/s12036-016-9374-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808073095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4008250221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9053cb889b47b48fdfa667ab8eccde32c5a6357a8ebadcd659a15aa3f9a195cd3</originalsourceid><addsrcrecordid>eNqFkctKxDAUhosoOI4-gLuCGzfRk6a5LXXwBoqL8bIMaZpqhk5bkxT17c04CiKIq5Nwvu-Hw59l-xiOMAA_DrgAwhBghiThJYKNbAKSE8Q5FZvpXVBAjBC6ne2EsADAsizkJPPzaNtW-3w-WBO9bvNZq0NwjTM6ur7LX118zm9c55bjMn9MH9ehTyTXXZ3f6LfPxamNr9Z-b-bJjTZljsPQ-5g_pOjeJ9gk2-5mW41ug937mtPs_vzsbnaJrm8vrmYn18gQUUQkgRJTCSGrklelaOpGM8Z1JawxtSWFoZoRyrWwla5NzajUmGpNmjQlNTWZZofr3MH3L6MNUS1dMKtrO9uPQWEBAjgBSf9HuQAKuGQ4oQe_0EU_-i4dkijOBWGsYInCa8r4PgRvGzV4t9T-XWFQq8LUujCVClOrwhQkp1g7IbHdk_U_kv-UPgCcA5nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777836626</pqid></control><display><type>article</type><title>Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Indian Academy of Sciences</source><source>Springer Nature - Complete Springer Journals</source><creator>Zhong-Bao, Liu</creator><creatorcontrib>Zhong-Bao, Liu</creatorcontrib><description>Support Vector Machine (SVM) is one of the important stellar spectral classification methods, and it is widely used in practice. But its classification efficiencies cannot be greatly improved because it does not take the class distribution into consideration. In view of this, a modified SVM named Minimum within-class and Maximum between-class scatter Support Vector Machine (MMSVM) is constructed to deal with the above problem. MMSVM merges the advantages of Fisher’s Discriminant Analysis (FDA) and SVM, and the comparative experiments on the Sloan Digital Sky Survey (SDSS) show that MMSVM performs better than SVM.</description><identifier>ISSN: 0250-6335</identifier><identifier>EISSN: 0973-7758</identifier><identifier>DOI: 10.1007/s12036-016-9374-0</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Artificial intelligence ; Astronomy ; Astrophysics and Astroparticles ; Classification ; Construction equipment ; Discriminant analysis ; Observations and Techniques ; Physics ; Physics and Astronomy ; Scatter ; Sky surveys (astronomy) ; Spectral classification ; Spectrum analysis ; Stars &amp; galaxies ; Support vector machines</subject><ispartof>Journal of astrophysics and astronomy, 2016-06, Vol.37 (2), p.1-6, Article 9</ispartof><rights>Indian Academy of Sciences 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9053cb889b47b48fdfa667ab8eccde32c5a6357a8ebadcd659a15aa3f9a195cd3</citedby><cites>FETCH-LOGICAL-c382t-9053cb889b47b48fdfa667ab8eccde32c5a6357a8ebadcd659a15aa3f9a195cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12036-016-9374-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12036-016-9374-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zhong-Bao, Liu</creatorcontrib><title>Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine</title><title>Journal of astrophysics and astronomy</title><addtitle>J Astrophys Astron</addtitle><description>Support Vector Machine (SVM) is one of the important stellar spectral classification methods, and it is widely used in practice. But its classification efficiencies cannot be greatly improved because it does not take the class distribution into consideration. In view of this, a modified SVM named Minimum within-class and Maximum between-class scatter Support Vector Machine (MMSVM) is constructed to deal with the above problem. MMSVM merges the advantages of Fisher’s Discriminant Analysis (FDA) and SVM, and the comparative experiments on the Sloan Digital Sky Survey (SDSS) show that MMSVM performs better than SVM.</description><subject>Artificial intelligence</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Classification</subject><subject>Construction equipment</subject><subject>Discriminant analysis</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Scatter</subject><subject>Sky surveys (astronomy)</subject><subject>Spectral classification</subject><subject>Spectrum analysis</subject><subject>Stars &amp; galaxies</subject><subject>Support vector machines</subject><issn>0250-6335</issn><issn>0973-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkctKxDAUhosoOI4-gLuCGzfRk6a5LXXwBoqL8bIMaZpqhk5bkxT17c04CiKIq5Nwvu-Hw59l-xiOMAA_DrgAwhBghiThJYKNbAKSE8Q5FZvpXVBAjBC6ne2EsADAsizkJPPzaNtW-3w-WBO9bvNZq0NwjTM6ur7LX118zm9c55bjMn9MH9ehTyTXXZ3f6LfPxamNr9Z-b-bJjTZljsPQ-5g_pOjeJ9gk2-5mW41ug937mtPs_vzsbnaJrm8vrmYn18gQUUQkgRJTCSGrklelaOpGM8Z1JawxtSWFoZoRyrWwla5NzajUmGpNmjQlNTWZZofr3MH3L6MNUS1dMKtrO9uPQWEBAjgBSf9HuQAKuGQ4oQe_0EU_-i4dkijOBWGsYInCa8r4PgRvGzV4t9T-XWFQq8LUujCVClOrwhQkp1g7IbHdk_U_kv-UPgCcA5nA</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Zhong-Bao, Liu</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160601</creationdate><title>Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine</title><author>Zhong-Bao, Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9053cb889b47b48fdfa667ab8eccde32c5a6357a8ebadcd659a15aa3f9a195cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial intelligence</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Classification</topic><topic>Construction equipment</topic><topic>Discriminant analysis</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Scatter</topic><topic>Sky surveys (astronomy)</topic><topic>Spectral classification</topic><topic>Spectrum analysis</topic><topic>Stars &amp; galaxies</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong-Bao, Liu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of astrophysics and astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong-Bao, Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine</atitle><jtitle>Journal of astrophysics and astronomy</jtitle><stitle>J Astrophys Astron</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>37</volume><issue>2</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>9</artnum><issn>0250-6335</issn><eissn>0973-7758</eissn><abstract>Support Vector Machine (SVM) is one of the important stellar spectral classification methods, and it is widely used in practice. But its classification efficiencies cannot be greatly improved because it does not take the class distribution into consideration. In view of this, a modified SVM named Minimum within-class and Maximum between-class scatter Support Vector Machine (MMSVM) is constructed to deal with the above problem. MMSVM merges the advantages of Fisher’s Discriminant Analysis (FDA) and SVM, and the comparative experiments on the Sloan Digital Sky Survey (SDSS) show that MMSVM performs better than SVM.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12036-016-9374-0</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0250-6335
ispartof Journal of astrophysics and astronomy, 2016-06, Vol.37 (2), p.1-6, Article 9
issn 0250-6335
0973-7758
language eng
recordid cdi_proquest_miscellaneous_1808073095
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Indian Academy of Sciences; Springer Nature - Complete Springer Journals
subjects Artificial intelligence
Astronomy
Astrophysics and Astroparticles
Classification
Construction equipment
Discriminant analysis
Observations and Techniques
Physics
Physics and Astronomy
Scatter
Sky surveys (astronomy)
Spectral classification
Spectrum analysis
Stars & galaxies
Support vector machines
title Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stellar%20Spectral%20Classification%20with%20Minimum%20Within-Class%20and%20Maximum%20Between-Class%20Scatter%20Support%20Vector%20Machine&rft.jtitle=Journal%20of%20astrophysics%20and%20astronomy&rft.au=Zhong-Bao,%20Liu&rft.date=2016-06-01&rft.volume=37&rft.issue=2&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=9&rft.issn=0250-6335&rft.eissn=0973-7758&rft_id=info:doi/10.1007/s12036-016-9374-0&rft_dat=%3Cproquest_cross%3E4008250221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777836626&rft_id=info:pmid/&rfr_iscdi=true