Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine
Support Vector Machine (SVM) is one of the important stellar spectral classification methods, and it is widely used in practice. But its classification efficiencies cannot be greatly improved because it does not take the class distribution into consideration. In view of this, a modified SVM named Mi...
Gespeichert in:
Veröffentlicht in: | Journal of astrophysics and astronomy 2016-06, Vol.37 (2), p.1-6, Article 9 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Journal of astrophysics and astronomy |
container_volume | 37 |
creator | Zhong-Bao, Liu |
description | Support Vector Machine (SVM) is one of the important stellar spectral classification methods, and it is widely used in practice. But its classification efficiencies cannot be greatly improved because it does not take the class distribution into consideration. In view of this, a modified SVM named Minimum within-class and Maximum between-class scatter Support Vector Machine (MMSVM) is constructed to deal with the above problem. MMSVM merges the advantages of Fisher’s Discriminant Analysis (FDA) and SVM, and the comparative experiments on the Sloan Digital Sky Survey (SDSS) show that MMSVM performs better than SVM. |
doi_str_mv | 10.1007/s12036-016-9374-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808073095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4008250221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9053cb889b47b48fdfa667ab8eccde32c5a6357a8ebadcd659a15aa3f9a195cd3</originalsourceid><addsrcrecordid>eNqFkctKxDAUhosoOI4-gLuCGzfRk6a5LXXwBoqL8bIMaZpqhk5bkxT17c04CiKIq5Nwvu-Hw59l-xiOMAA_DrgAwhBghiThJYKNbAKSE8Q5FZvpXVBAjBC6ne2EsADAsizkJPPzaNtW-3w-WBO9bvNZq0NwjTM6ur7LX118zm9c55bjMn9MH9ehTyTXXZ3f6LfPxamNr9Z-b-bJjTZljsPQ-5g_pOjeJ9gk2-5mW41ug937mtPs_vzsbnaJrm8vrmYn18gQUUQkgRJTCSGrklelaOpGM8Z1JawxtSWFoZoRyrWwla5NzajUmGpNmjQlNTWZZofr3MH3L6MNUS1dMKtrO9uPQWEBAjgBSf9HuQAKuGQ4oQe_0EU_-i4dkijOBWGsYInCa8r4PgRvGzV4t9T-XWFQq8LUujCVClOrwhQkp1g7IbHdk_U_kv-UPgCcA5nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777836626</pqid></control><display><type>article</type><title>Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Indian Academy of Sciences</source><source>Springer Nature - Complete Springer Journals</source><creator>Zhong-Bao, Liu</creator><creatorcontrib>Zhong-Bao, Liu</creatorcontrib><description>Support Vector Machine (SVM) is one of the important stellar spectral classification methods, and it is widely used in practice. But its classification efficiencies cannot be greatly improved because it does not take the class distribution into consideration. In view of this, a modified SVM named Minimum within-class and Maximum between-class scatter Support Vector Machine (MMSVM) is constructed to deal with the above problem. MMSVM merges the advantages of Fisher’s Discriminant Analysis (FDA) and SVM, and the comparative experiments on the Sloan Digital Sky Survey (SDSS) show that MMSVM performs better than SVM.</description><identifier>ISSN: 0250-6335</identifier><identifier>EISSN: 0973-7758</identifier><identifier>DOI: 10.1007/s12036-016-9374-0</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Artificial intelligence ; Astronomy ; Astrophysics and Astroparticles ; Classification ; Construction equipment ; Discriminant analysis ; Observations and Techniques ; Physics ; Physics and Astronomy ; Scatter ; Sky surveys (astronomy) ; Spectral classification ; Spectrum analysis ; Stars & galaxies ; Support vector machines</subject><ispartof>Journal of astrophysics and astronomy, 2016-06, Vol.37 (2), p.1-6, Article 9</ispartof><rights>Indian Academy of Sciences 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9053cb889b47b48fdfa667ab8eccde32c5a6357a8ebadcd659a15aa3f9a195cd3</citedby><cites>FETCH-LOGICAL-c382t-9053cb889b47b48fdfa667ab8eccde32c5a6357a8ebadcd659a15aa3f9a195cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12036-016-9374-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12036-016-9374-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zhong-Bao, Liu</creatorcontrib><title>Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine</title><title>Journal of astrophysics and astronomy</title><addtitle>J Astrophys Astron</addtitle><description>Support Vector Machine (SVM) is one of the important stellar spectral classification methods, and it is widely used in practice. But its classification efficiencies cannot be greatly improved because it does not take the class distribution into consideration. In view of this, a modified SVM named Minimum within-class and Maximum between-class scatter Support Vector Machine (MMSVM) is constructed to deal with the above problem. MMSVM merges the advantages of Fisher’s Discriminant Analysis (FDA) and SVM, and the comparative experiments on the Sloan Digital Sky Survey (SDSS) show that MMSVM performs better than SVM.</description><subject>Artificial intelligence</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Classification</subject><subject>Construction equipment</subject><subject>Discriminant analysis</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Scatter</subject><subject>Sky surveys (astronomy)</subject><subject>Spectral classification</subject><subject>Spectrum analysis</subject><subject>Stars & galaxies</subject><subject>Support vector machines</subject><issn>0250-6335</issn><issn>0973-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkctKxDAUhosoOI4-gLuCGzfRk6a5LXXwBoqL8bIMaZpqhk5bkxT17c04CiKIq5Nwvu-Hw59l-xiOMAA_DrgAwhBghiThJYKNbAKSE8Q5FZvpXVBAjBC6ne2EsADAsizkJPPzaNtW-3w-WBO9bvNZq0NwjTM6ur7LX118zm9c55bjMn9MH9ehTyTXXZ3f6LfPxamNr9Z-b-bJjTZljsPQ-5g_pOjeJ9gk2-5mW41ug937mtPs_vzsbnaJrm8vrmYn18gQUUQkgRJTCSGrklelaOpGM8Z1JawxtSWFoZoRyrWwla5NzajUmGpNmjQlNTWZZofr3MH3L6MNUS1dMKtrO9uPQWEBAjgBSf9HuQAKuGQ4oQe_0EU_-i4dkijOBWGsYInCa8r4PgRvGzV4t9T-XWFQq8LUujCVClOrwhQkp1g7IbHdk_U_kv-UPgCcA5nA</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Zhong-Bao, Liu</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160601</creationdate><title>Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine</title><author>Zhong-Bao, Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9053cb889b47b48fdfa667ab8eccde32c5a6357a8ebadcd659a15aa3f9a195cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial intelligence</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Classification</topic><topic>Construction equipment</topic><topic>Discriminant analysis</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Scatter</topic><topic>Sky surveys (astronomy)</topic><topic>Spectral classification</topic><topic>Spectrum analysis</topic><topic>Stars & galaxies</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong-Bao, Liu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of astrophysics and astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong-Bao, Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine</atitle><jtitle>Journal of astrophysics and astronomy</jtitle><stitle>J Astrophys Astron</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>37</volume><issue>2</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>9</artnum><issn>0250-6335</issn><eissn>0973-7758</eissn><abstract>Support Vector Machine (SVM) is one of the important stellar spectral classification methods, and it is widely used in practice. But its classification efficiencies cannot be greatly improved because it does not take the class distribution into consideration. In view of this, a modified SVM named Minimum within-class and Maximum between-class scatter Support Vector Machine (MMSVM) is constructed to deal with the above problem. MMSVM merges the advantages of Fisher’s Discriminant Analysis (FDA) and SVM, and the comparative experiments on the Sloan Digital Sky Survey (SDSS) show that MMSVM performs better than SVM.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12036-016-9374-0</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0250-6335 |
ispartof | Journal of astrophysics and astronomy, 2016-06, Vol.37 (2), p.1-6, Article 9 |
issn | 0250-6335 0973-7758 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808073095 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Indian Academy of Sciences; Springer Nature - Complete Springer Journals |
subjects | Artificial intelligence Astronomy Astrophysics and Astroparticles Classification Construction equipment Discriminant analysis Observations and Techniques Physics Physics and Astronomy Scatter Sky surveys (astronomy) Spectral classification Spectrum analysis Stars & galaxies Support vector machines |
title | Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stellar%20Spectral%20Classification%20with%20Minimum%20Within-Class%20and%20Maximum%20Between-Class%20Scatter%20Support%20Vector%20Machine&rft.jtitle=Journal%20of%20astrophysics%20and%20astronomy&rft.au=Zhong-Bao,%20Liu&rft.date=2016-06-01&rft.volume=37&rft.issue=2&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=9&rft.issn=0250-6335&rft.eissn=0973-7758&rft_id=info:doi/10.1007/s12036-016-9374-0&rft_dat=%3Cproquest_cross%3E4008250221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777836626&rft_id=info:pmid/&rfr_iscdi=true |