Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes
We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 2009-06, Vol.56 (4), p.1-34 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Journal of the ACM |
container_volume | 56 |
creator | GURUSWAMI, Venkatesan UMANS, Christopher VADHAN, Salil |
description | We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous constructions of Ta-Shma et al. [2007] required at least one of these to be quasipolynomial in the optimal. Our expanders have a short and self-contained description and analysis, based on the ideas underlying the recent list-decodable error-correcting codes of Parvaresh and Vardy [2005].
Our expanders can be interpreted as near-optimal “randomness condensers,” that reduce the task of extracting randomness from sources of arbitrary min-entropy rate to extracting randomness from sources of min-entropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain a new, self-contained construction of randomness extractors that is optimal up to constant factors, while being much simpler than the previous construction of Lu et al. [2003] and improving upon it when the error parameter is small (e.g., 1/poly(n)). |
doi_str_mv | 10.1145/1538902.1538904 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808072857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808072857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-90c09260b1f2ae82d8466131f0f11f038c961d0a6db1380bc8cd07849e69db713</originalsourceid><addsrcrecordid>eNpdUE1Lw0AQXUTBWj17DYLgJe3M7ibZHKVULRQUseItbPYDW5Js3U3F_ntXGzwIwzyGefN48wi5RJgg8myKGRMl0MkB-REZYZYVacGyt2MyAgCeZhzxlJyFsIkjUChGZLHqatnIThmdzL-2stPGhyRC8hybazsTQlz0XqrexY31rk2epP-U3oT39FV6vU9mTptwTk6sbIK5GHBMVnfzl9lDuny8X8xul6niTPRpCQpKmkONlkojqBY8z5GhBYuxMaHKHDXIXNfIBNRKKA2F4KXJS10XyMbk5qC79e5jZ0JfteugTBOfMG4XKhQgoKAiKyL16h9143a-i-4qLDllyH_1pgeS8i4Eb2y19etW-n2FUP0kWw3JDsjjxfUgK4OSjfUxvnX4O6PRAY_FvgGFMHZD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194231471</pqid></control><display><type>article</type><title>Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes</title><source>ACM Digital Library Complete</source><creator>GURUSWAMI, Venkatesan ; UMANS, Christopher ; VADHAN, Salil</creator><creatorcontrib>GURUSWAMI, Venkatesan ; UMANS, Christopher ; VADHAN, Salil</creatorcontrib><description>We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous constructions of Ta-Shma et al. [2007] required at least one of these to be quasipolynomial in the optimal. Our expanders have a short and self-contained description and analysis, based on the ideas underlying the recent list-decodable error-correcting codes of Parvaresh and Vardy [2005].
Our expanders can be interpreted as near-optimal “randomness condensers,” that reduce the task of extracting randomness from sources of arbitrary min-entropy rate to extracting randomness from sources of min-entropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain a new, self-contained construction of randomness extractors that is optimal up to constant factors, while being much simpler than the previous construction of Lu et al. [2003] and improving upon it when the error parameter is small (e.g., 1/poly(n)).</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/1538902.1538904</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Codes ; Coding, codes ; Computer science; control theory; systems ; Constants ; Construction ; Exact sciences and technology ; Expanders ; Extractors ; Graph theory ; Graphs ; Information, signal and communications theory ; Optimization ; Polynomials ; Randomness ; Signal and communications theory ; Studies ; Tasks ; Telecommunications and information theory ; Theoretical computing</subject><ispartof>Journal of the ACM, 2009-06, Vol.56 (4), p.1-34</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright Association for Computing Machinery Jun 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-90c09260b1f2ae82d8466131f0f11f038c961d0a6db1380bc8cd07849e69db713</citedby><cites>FETCH-LOGICAL-c438t-90c09260b1f2ae82d8466131f0f11f038c961d0a6db1380bc8cd07849e69db713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21804804$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GURUSWAMI, Venkatesan</creatorcontrib><creatorcontrib>UMANS, Christopher</creatorcontrib><creatorcontrib>VADHAN, Salil</creatorcontrib><title>Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes</title><title>Journal of the ACM</title><description>We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous constructions of Ta-Shma et al. [2007] required at least one of these to be quasipolynomial in the optimal. Our expanders have a short and self-contained description and analysis, based on the ideas underlying the recent list-decodable error-correcting codes of Parvaresh and Vardy [2005].
Our expanders can be interpreted as near-optimal “randomness condensers,” that reduce the task of extracting randomness from sources of arbitrary min-entropy rate to extracting randomness from sources of min-entropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain a new, self-contained construction of randomness extractors that is optimal up to constant factors, while being much simpler than the previous construction of Lu et al. [2003] and improving upon it when the error parameter is small (e.g., 1/poly(n)).</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Computer science; control theory; systems</subject><subject>Constants</subject><subject>Construction</subject><subject>Exact sciences and technology</subject><subject>Expanders</subject><subject>Extractors</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information, signal and communications theory</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Randomness</subject><subject>Signal and communications theory</subject><subject>Studies</subject><subject>Tasks</subject><subject>Telecommunications and information theory</subject><subject>Theoretical computing</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdUE1Lw0AQXUTBWj17DYLgJe3M7ibZHKVULRQUseItbPYDW5Js3U3F_ntXGzwIwzyGefN48wi5RJgg8myKGRMl0MkB-REZYZYVacGyt2MyAgCeZhzxlJyFsIkjUChGZLHqatnIThmdzL-2stPGhyRC8hybazsTQlz0XqrexY31rk2epP-U3oT39FV6vU9mTptwTk6sbIK5GHBMVnfzl9lDuny8X8xul6niTPRpCQpKmkONlkojqBY8z5GhBYuxMaHKHDXIXNfIBNRKKA2F4KXJS10XyMbk5qC79e5jZ0JfteugTBOfMG4XKhQgoKAiKyL16h9143a-i-4qLDllyH_1pgeS8i4Eb2y19etW-n2FUP0kWw3JDsjjxfUgK4OSjfUxvnX4O6PRAY_FvgGFMHZD</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>GURUSWAMI, Venkatesan</creator><creator>UMANS, Christopher</creator><creator>VADHAN, Salil</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090601</creationdate><title>Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes</title><author>GURUSWAMI, Venkatesan ; UMANS, Christopher ; VADHAN, Salil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-90c09260b1f2ae82d8466131f0f11f038c961d0a6db1380bc8cd07849e69db713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Computer science; control theory; systems</topic><topic>Constants</topic><topic>Construction</topic><topic>Exact sciences and technology</topic><topic>Expanders</topic><topic>Extractors</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information, signal and communications theory</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Randomness</topic><topic>Signal and communications theory</topic><topic>Studies</topic><topic>Tasks</topic><topic>Telecommunications and information theory</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GURUSWAMI, Venkatesan</creatorcontrib><creatorcontrib>UMANS, Christopher</creatorcontrib><creatorcontrib>VADHAN, Salil</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GURUSWAMI, Venkatesan</au><au>UMANS, Christopher</au><au>VADHAN, Salil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes</atitle><jtitle>Journal of the ACM</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>56</volume><issue>4</issue><spage>1</spage><epage>34</epage><pages>1-34</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous constructions of Ta-Shma et al. [2007] required at least one of these to be quasipolynomial in the optimal. Our expanders have a short and self-contained description and analysis, based on the ideas underlying the recent list-decodable error-correcting codes of Parvaresh and Vardy [2005].
Our expanders can be interpreted as near-optimal “randomness condensers,” that reduce the task of extracting randomness from sources of arbitrary min-entropy rate to extracting randomness from sources of min-entropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain a new, self-contained construction of randomness extractors that is optimal up to constant factors, while being much simpler than the previous construction of Lu et al. [2003] and improving upon it when the error parameter is small (e.g., 1/poly(n)).</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/1538902.1538904</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-5411 |
ispartof | Journal of the ACM, 2009-06, Vol.56 (4), p.1-34 |
issn | 0004-5411 1557-735X |
language | eng |
recordid | cdi_proquest_miscellaneous_1808072857 |
source | ACM Digital Library Complete |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Codes Coding, codes Computer science control theory systems Constants Construction Exact sciences and technology Expanders Extractors Graph theory Graphs Information, signal and communications theory Optimization Polynomials Randomness Signal and communications theory Studies Tasks Telecommunications and information theory Theoretical computing |
title | Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbalanced%20Expanders%20and%20Randomness%20Extractors%20from%20Parvaresh-Vardy%20Codes&rft.jtitle=Journal%20of%20the%20ACM&rft.au=GURUSWAMI,%20Venkatesan&rft.date=2009-06-01&rft.volume=56&rft.issue=4&rft.spage=1&rft.epage=34&rft.pages=1-34&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/1538902.1538904&rft_dat=%3Cproquest_cross%3E1808072857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194231471&rft_id=info:pmid/&rfr_iscdi=true |