Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes

We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 2009-06, Vol.56 (4), p.1-34
Hauptverfasser: GURUSWAMI, Venkatesan, UMANS, Christopher, VADHAN, Salil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 4
container_start_page 1
container_title Journal of the ACM
container_volume 56
creator GURUSWAMI, Venkatesan
UMANS, Christopher
VADHAN, Salil
description We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous constructions of Ta-Shma et al. [2007] required at least one of these to be quasipolynomial in the optimal. Our expanders have a short and self-contained description and analysis, based on the ideas underlying the recent list-decodable error-correcting codes of Parvaresh and Vardy [2005]. Our expanders can be interpreted as near-optimal “randomness condensers,” that reduce the task of extracting randomness from sources of arbitrary min-entropy rate to extracting randomness from sources of min-entropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain a new, self-contained construction of randomness extractors that is optimal up to constant factors, while being much simpler than the previous construction of Lu et al. [2003] and improving upon it when the error parameter is small (e.g., 1/poly(n)).
doi_str_mv 10.1145/1538902.1538904
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808072857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808072857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-90c09260b1f2ae82d8466131f0f11f038c961d0a6db1380bc8cd07849e69db713</originalsourceid><addsrcrecordid>eNpdUE1Lw0AQXUTBWj17DYLgJe3M7ibZHKVULRQUseItbPYDW5Js3U3F_ntXGzwIwzyGefN48wi5RJgg8myKGRMl0MkB-REZYZYVacGyt2MyAgCeZhzxlJyFsIkjUChGZLHqatnIThmdzL-2stPGhyRC8hybazsTQlz0XqrexY31rk2epP-U3oT39FV6vU9mTptwTk6sbIK5GHBMVnfzl9lDuny8X8xul6niTPRpCQpKmkONlkojqBY8z5GhBYuxMaHKHDXIXNfIBNRKKA2F4KXJS10XyMbk5qC79e5jZ0JfteugTBOfMG4XKhQgoKAiKyL16h9143a-i-4qLDllyH_1pgeS8i4Eb2y19etW-n2FUP0kWw3JDsjjxfUgK4OSjfUxvnX4O6PRAY_FvgGFMHZD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194231471</pqid></control><display><type>article</type><title>Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes</title><source>ACM Digital Library Complete</source><creator>GURUSWAMI, Venkatesan ; UMANS, Christopher ; VADHAN, Salil</creator><creatorcontrib>GURUSWAMI, Venkatesan ; UMANS, Christopher ; VADHAN, Salil</creatorcontrib><description>We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous constructions of Ta-Shma et al. [2007] required at least one of these to be quasipolynomial in the optimal. Our expanders have a short and self-contained description and analysis, based on the ideas underlying the recent list-decodable error-correcting codes of Parvaresh and Vardy [2005]. Our expanders can be interpreted as near-optimal “randomness condensers,” that reduce the task of extracting randomness from sources of arbitrary min-entropy rate to extracting randomness from sources of min-entropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain a new, self-contained construction of randomness extractors that is optimal up to constant factors, while being much simpler than the previous construction of Lu et al. [2003] and improving upon it when the error parameter is small (e.g., 1/poly(n)).</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/1538902.1538904</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Codes ; Coding, codes ; Computer science; control theory; systems ; Constants ; Construction ; Exact sciences and technology ; Expanders ; Extractors ; Graph theory ; Graphs ; Information, signal and communications theory ; Optimization ; Polynomials ; Randomness ; Signal and communications theory ; Studies ; Tasks ; Telecommunications and information theory ; Theoretical computing</subject><ispartof>Journal of the ACM, 2009-06, Vol.56 (4), p.1-34</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright Association for Computing Machinery Jun 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-90c09260b1f2ae82d8466131f0f11f038c961d0a6db1380bc8cd07849e69db713</citedby><cites>FETCH-LOGICAL-c438t-90c09260b1f2ae82d8466131f0f11f038c961d0a6db1380bc8cd07849e69db713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21804804$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GURUSWAMI, Venkatesan</creatorcontrib><creatorcontrib>UMANS, Christopher</creatorcontrib><creatorcontrib>VADHAN, Salil</creatorcontrib><title>Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes</title><title>Journal of the ACM</title><description>We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous constructions of Ta-Shma et al. [2007] required at least one of these to be quasipolynomial in the optimal. Our expanders have a short and self-contained description and analysis, based on the ideas underlying the recent list-decodable error-correcting codes of Parvaresh and Vardy [2005]. Our expanders can be interpreted as near-optimal “randomness condensers,” that reduce the task of extracting randomness from sources of arbitrary min-entropy rate to extracting randomness from sources of min-entropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain a new, self-contained construction of randomness extractors that is optimal up to constant factors, while being much simpler than the previous construction of Lu et al. [2003] and improving upon it when the error parameter is small (e.g., 1/poly(n)).</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Computer science; control theory; systems</subject><subject>Constants</subject><subject>Construction</subject><subject>Exact sciences and technology</subject><subject>Expanders</subject><subject>Extractors</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information, signal and communications theory</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Randomness</subject><subject>Signal and communications theory</subject><subject>Studies</subject><subject>Tasks</subject><subject>Telecommunications and information theory</subject><subject>Theoretical computing</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdUE1Lw0AQXUTBWj17DYLgJe3M7ibZHKVULRQUseItbPYDW5Js3U3F_ntXGzwIwzyGefN48wi5RJgg8myKGRMl0MkB-REZYZYVacGyt2MyAgCeZhzxlJyFsIkjUChGZLHqatnIThmdzL-2stPGhyRC8hybazsTQlz0XqrexY31rk2epP-U3oT39FV6vU9mTptwTk6sbIK5GHBMVnfzl9lDuny8X8xul6niTPRpCQpKmkONlkojqBY8z5GhBYuxMaHKHDXIXNfIBNRKKA2F4KXJS10XyMbk5qC79e5jZ0JfteugTBOfMG4XKhQgoKAiKyL16h9143a-i-4qLDllyH_1pgeS8i4Eb2y19etW-n2FUP0kWw3JDsjjxfUgK4OSjfUxvnX4O6PRAY_FvgGFMHZD</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>GURUSWAMI, Venkatesan</creator><creator>UMANS, Christopher</creator><creator>VADHAN, Salil</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090601</creationdate><title>Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes</title><author>GURUSWAMI, Venkatesan ; UMANS, Christopher ; VADHAN, Salil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-90c09260b1f2ae82d8466131f0f11f038c961d0a6db1380bc8cd07849e69db713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Computer science; control theory; systems</topic><topic>Constants</topic><topic>Construction</topic><topic>Exact sciences and technology</topic><topic>Expanders</topic><topic>Extractors</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information, signal and communications theory</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Randomness</topic><topic>Signal and communications theory</topic><topic>Studies</topic><topic>Tasks</topic><topic>Telecommunications and information theory</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GURUSWAMI, Venkatesan</creatorcontrib><creatorcontrib>UMANS, Christopher</creatorcontrib><creatorcontrib>VADHAN, Salil</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GURUSWAMI, Venkatesan</au><au>UMANS, Christopher</au><au>VADHAN, Salil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes</atitle><jtitle>Journal of the ACM</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>56</volume><issue>4</issue><spage>1</spage><epage>34</epage><pages>1-34</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous constructions of Ta-Shma et al. [2007] required at least one of these to be quasipolynomial in the optimal. Our expanders have a short and self-contained description and analysis, based on the ideas underlying the recent list-decodable error-correcting codes of Parvaresh and Vardy [2005]. Our expanders can be interpreted as near-optimal “randomness condensers,” that reduce the task of extracting randomness from sources of arbitrary min-entropy rate to extracting randomness from sources of min-entropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain a new, self-contained construction of randomness extractors that is optimal up to constant factors, while being much simpler than the previous construction of Lu et al. [2003] and improving upon it when the error parameter is small (e.g., 1/poly(n)).</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/1538902.1538904</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 2009-06, Vol.56 (4), p.1-34
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_miscellaneous_1808072857
source ACM Digital Library Complete
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Codes
Coding, codes
Computer science
control theory
systems
Constants
Construction
Exact sciences and technology
Expanders
Extractors
Graph theory
Graphs
Information, signal and communications theory
Optimization
Polynomials
Randomness
Signal and communications theory
Studies
Tasks
Telecommunications and information theory
Theoretical computing
title Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbalanced%20Expanders%20and%20Randomness%20Extractors%20from%20Parvaresh-Vardy%20Codes&rft.jtitle=Journal%20of%20the%20ACM&rft.au=GURUSWAMI,%20Venkatesan&rft.date=2009-06-01&rft.volume=56&rft.issue=4&rft.spage=1&rft.epage=34&rft.pages=1-34&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/1538902.1538904&rft_dat=%3Cproquest_cross%3E1808072857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194231471&rft_id=info:pmid/&rfr_iscdi=true