Understanding image concepts using ISTOP model

This paper focuses on recognizing image concepts by introducing the ISTOP model. The model parses the images from scene to object׳s parts by using a context sensitive grammar. Since there is a gap between the scene and object levels, this grammar proposes the “Visual Term” level to bridge the gap. V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2016-05, Vol.53, p.174-183
Hauptverfasser: Zarchi, M.S., Tan, R.T., van Gemeren, C., Monadjemi, A., Veltkamp, R.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue
container_start_page 174
container_title Pattern recognition
container_volume 53
creator Zarchi, M.S.
Tan, R.T.
van Gemeren, C.
Monadjemi, A.
Veltkamp, R.C.
description This paper focuses on recognizing image concepts by introducing the ISTOP model. The model parses the images from scene to object׳s parts by using a context sensitive grammar. Since there is a gap between the scene and object levels, this grammar proposes the “Visual Term” level to bridge the gap. Visual term is a higher concept level than the object level representing a few co-occurring objects. The grammar used in the model can be embodied in an And–Or graph representation. The hierarchical structure of the graph decomposes an image from the scene level into the visual term, object level and part level by terminal and non-terminal nodes, while the horizontal links in the graph impose the context and constraints between the nodes. In order to learn the grammar constraints and their weights, we propose an algorithm that can perform on weakly annotated datasets. This algorithm searches in the dataset to find visual terms without supervision and then learns the weights of the constraints using a latent SVM. The experimental results on the Pascal VOC dataset show that our model outperforms the state-of-the-art approaches in recognizing image concepts. •In understanding an image there is a significant gap between scene level and object level.•ISTOP model can parse an image form scene level to visual term, object and part level by context sensitive grammar.•The visual term is a new concept which can bridge the gap between scene level and object level.•The context used in the grammar can improve object detection as well as visual term detection.
doi_str_mv 10.1016/j.patcog.2015.11.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808069898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320315004306</els_id><sourcerecordid>1808069898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-db7f0506d52cd2f702beff474b4d3b15d46fed8c21503346a235a99ec8fbdd4c3</originalsourceid><addsrcrecordid>eNp9kEtrwzAQhEVpoWnaf9CDj73Y3ZXk16VQQh-BQApNzsKWVkbBsV3JKfTf18E997QwOzMwH2P3CAkCZo-HZKhG3TcJB0wTxAQQLtgCi1zEKUp-yRYAAmPBQVyzmxAOAJhPjwVL9p0hH8aqM65rInesGop032kaxhCdwllcf-62H9GxN9TesitbtYHu_u6S7V9fdqv3eLN9W6-eN7GWUI6xqXMLKWQm5dpwmwOvyVqZy1oaUWNqZGbJFJpjCkLIrOIircqSdGFrY6QWS_Yw9w6-_zpRGNXRBU1tW3XUn4LCAgrIyqIsJqucrdr3IXiyavDTDP-jENQZjzqoGY8641GIasIzxZ7mGE0zvh15FbSjabdxnvSoTO_-L_gFk7xvQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808069898</pqid></control><display><type>article</type><title>Understanding image concepts using ISTOP model</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zarchi, M.S. ; Tan, R.T. ; van Gemeren, C. ; Monadjemi, A. ; Veltkamp, R.C.</creator><creatorcontrib>Zarchi, M.S. ; Tan, R.T. ; van Gemeren, C. ; Monadjemi, A. ; Veltkamp, R.C.</creatorcontrib><description>This paper focuses on recognizing image concepts by introducing the ISTOP model. The model parses the images from scene to object׳s parts by using a context sensitive grammar. Since there is a gap between the scene and object levels, this grammar proposes the “Visual Term” level to bridge the gap. Visual term is a higher concept level than the object level representing a few co-occurring objects. The grammar used in the model can be embodied in an And–Or graph representation. The hierarchical structure of the graph decomposes an image from the scene level into the visual term, object level and part level by terminal and non-terminal nodes, while the horizontal links in the graph impose the context and constraints between the nodes. In order to learn the grammar constraints and their weights, we propose an algorithm that can perform on weakly annotated datasets. This algorithm searches in the dataset to find visual terms without supervision and then learns the weights of the constraints using a latent SVM. The experimental results on the Pascal VOC dataset show that our model outperforms the state-of-the-art approaches in recognizing image concepts. •In understanding an image there is a significant gap between scene level and object level.•ISTOP model can parse an image form scene level to visual term, object and part level by context sensitive grammar.•The visual term is a new concept which can bridge the gap between scene level and object level.•The context used in the grammar can improve object detection as well as visual term detection.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2015.11.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; And–Or graph ; Concept recognition ; Context sensitive grammar ; Grammars ; Graphs ; Image parsing ; Latent SVM ; Object recognition ; Pattern recognition ; Terminals ; Visual ; Visual term</subject><ispartof>Pattern recognition, 2016-05, Vol.53, p.174-183</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-db7f0506d52cd2f702beff474b4d3b15d46fed8c21503346a235a99ec8fbdd4c3</citedby><cites>FETCH-LOGICAL-c409t-db7f0506d52cd2f702beff474b4d3b15d46fed8c21503346a235a99ec8fbdd4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0031320315004306$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zarchi, M.S.</creatorcontrib><creatorcontrib>Tan, R.T.</creatorcontrib><creatorcontrib>van Gemeren, C.</creatorcontrib><creatorcontrib>Monadjemi, A.</creatorcontrib><creatorcontrib>Veltkamp, R.C.</creatorcontrib><title>Understanding image concepts using ISTOP model</title><title>Pattern recognition</title><description>This paper focuses on recognizing image concepts by introducing the ISTOP model. The model parses the images from scene to object׳s parts by using a context sensitive grammar. Since there is a gap between the scene and object levels, this grammar proposes the “Visual Term” level to bridge the gap. Visual term is a higher concept level than the object level representing a few co-occurring objects. The grammar used in the model can be embodied in an And–Or graph representation. The hierarchical structure of the graph decomposes an image from the scene level into the visual term, object level and part level by terminal and non-terminal nodes, while the horizontal links in the graph impose the context and constraints between the nodes. In order to learn the grammar constraints and their weights, we propose an algorithm that can perform on weakly annotated datasets. This algorithm searches in the dataset to find visual terms without supervision and then learns the weights of the constraints using a latent SVM. The experimental results on the Pascal VOC dataset show that our model outperforms the state-of-the-art approaches in recognizing image concepts. •In understanding an image there is a significant gap between scene level and object level.•ISTOP model can parse an image form scene level to visual term, object and part level by context sensitive grammar.•The visual term is a new concept which can bridge the gap between scene level and object level.•The context used in the grammar can improve object detection as well as visual term detection.</description><subject>Algorithms</subject><subject>And–Or graph</subject><subject>Concept recognition</subject><subject>Context sensitive grammar</subject><subject>Grammars</subject><subject>Graphs</subject><subject>Image parsing</subject><subject>Latent SVM</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Terminals</subject><subject>Visual</subject><subject>Visual term</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrwzAQhEVpoWnaf9CDj73Y3ZXk16VQQh-BQApNzsKWVkbBsV3JKfTf18E997QwOzMwH2P3CAkCZo-HZKhG3TcJB0wTxAQQLtgCi1zEKUp-yRYAAmPBQVyzmxAOAJhPjwVL9p0hH8aqM65rInesGop032kaxhCdwllcf-62H9GxN9TesitbtYHu_u6S7V9fdqv3eLN9W6-eN7GWUI6xqXMLKWQm5dpwmwOvyVqZy1oaUWNqZGbJFJpjCkLIrOIircqSdGFrY6QWS_Yw9w6-_zpRGNXRBU1tW3XUn4LCAgrIyqIsJqucrdr3IXiyavDTDP-jENQZjzqoGY8641GIasIzxZ7mGE0zvh15FbSjabdxnvSoTO_-L_gFk7xvQw</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Zarchi, M.S.</creator><creator>Tan, R.T.</creator><creator>van Gemeren, C.</creator><creator>Monadjemi, A.</creator><creator>Veltkamp, R.C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160501</creationdate><title>Understanding image concepts using ISTOP model</title><author>Zarchi, M.S. ; Tan, R.T. ; van Gemeren, C. ; Monadjemi, A. ; Veltkamp, R.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-db7f0506d52cd2f702beff474b4d3b15d46fed8c21503346a235a99ec8fbdd4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>And–Or graph</topic><topic>Concept recognition</topic><topic>Context sensitive grammar</topic><topic>Grammars</topic><topic>Graphs</topic><topic>Image parsing</topic><topic>Latent SVM</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Terminals</topic><topic>Visual</topic><topic>Visual term</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarchi, M.S.</creatorcontrib><creatorcontrib>Tan, R.T.</creatorcontrib><creatorcontrib>van Gemeren, C.</creatorcontrib><creatorcontrib>Monadjemi, A.</creatorcontrib><creatorcontrib>Veltkamp, R.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarchi, M.S.</au><au>Tan, R.T.</au><au>van Gemeren, C.</au><au>Monadjemi, A.</au><au>Veltkamp, R.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding image concepts using ISTOP model</atitle><jtitle>Pattern recognition</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>53</volume><spage>174</spage><epage>183</epage><pages>174-183</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><abstract>This paper focuses on recognizing image concepts by introducing the ISTOP model. The model parses the images from scene to object׳s parts by using a context sensitive grammar. Since there is a gap between the scene and object levels, this grammar proposes the “Visual Term” level to bridge the gap. Visual term is a higher concept level than the object level representing a few co-occurring objects. The grammar used in the model can be embodied in an And–Or graph representation. The hierarchical structure of the graph decomposes an image from the scene level into the visual term, object level and part level by terminal and non-terminal nodes, while the horizontal links in the graph impose the context and constraints between the nodes. In order to learn the grammar constraints and their weights, we propose an algorithm that can perform on weakly annotated datasets. This algorithm searches in the dataset to find visual terms without supervision and then learns the weights of the constraints using a latent SVM. The experimental results on the Pascal VOC dataset show that our model outperforms the state-of-the-art approaches in recognizing image concepts. •In understanding an image there is a significant gap between scene level and object level.•ISTOP model can parse an image form scene level to visual term, object and part level by context sensitive grammar.•The visual term is a new concept which can bridge the gap between scene level and object level.•The context used in the grammar can improve object detection as well as visual term detection.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2015.11.010</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2016-05, Vol.53, p.174-183
issn 0031-3203
1873-5142
language eng
recordid cdi_proquest_miscellaneous_1808069898
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
And–Or graph
Concept recognition
Context sensitive grammar
Grammars
Graphs
Image parsing
Latent SVM
Object recognition
Pattern recognition
Terminals
Visual
Visual term
title Understanding image concepts using ISTOP model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20image%20concepts%20using%20ISTOP%20model&rft.jtitle=Pattern%20recognition&rft.au=Zarchi,%20M.S.&rft.date=2016-05-01&rft.volume=53&rft.spage=174&rft.epage=183&rft.pages=174-183&rft.issn=0031-3203&rft.eissn=1873-5142&rft_id=info:doi/10.1016/j.patcog.2015.11.010&rft_dat=%3Cproquest_cross%3E1808069898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808069898&rft_id=info:pmid/&rft_els_id=S0031320315004306&rfr_iscdi=true