Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance
We develop a Fourier method to solve quite general backward stochastic differential equations (BSDEs) with second-order accuracy. The underlying forward stochastic differential equation (FSDE) is approximated by different Taylor schemes, such as the Euler, Milstein, and Order 2.0 weak Taylor schemes...
Gespeichert in:
Veröffentlicht in: | Applied numerical mathematics 2016-05, Vol.103, p.1-26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Applied numerical mathematics |
container_volume | 103 |
creator | Ruijter, M.J. Oosterlee, C.W. |
description | We develop a Fourier method to solve quite general backward stochastic differential equations (BSDEs) with second-order accuracy. The underlying forward stochastic differential equation (FSDE) is approximated by different Taylor schemes, such as the Euler, Milstein, and Order 2.0 weak Taylor schemes, or by exact simulation. A θ-time-discretization of the time-integrands leads to an induction scheme with conditional expectations. The computation of the conditional expectations appearing relies on the availability of the characteristic function for these schemes. We will use the characteristic function of the discrete forward process. The expected values are approximated by Fourier cosine series expansions. Numerical experiments show rapid convergence of our efficient probabilistic numerical method. Second-order accuracy is observed and also proved. We apply the method to, among others, option pricing problems under the Constant Elasticity of Variance and Cox–Ingersoll–Ross processes. |
doi_str_mv | 10.1016/j.apnum.2015.12.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808069653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927416000040</els_id><sourcerecordid>1808069653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-74a494c022c66fc620f7f8086d7ac67421743808665b9a9db0a9e42b130a2e373</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1g8siScHcduBgZUPiUEA2W2XPuiuiRxsRsQ_x6XMjPdh97npHsIOWdQMmDycl2azTD2JQdWl4yXANUBmbCZqopaSDgkk5yaFQ1X4picpLQGgLoWMCGL57HH6K3p6F0Yo8dIe9yugqNmcDShDYMrQnR5vzDfXYg02RX2SNvcLo19_zLR0deb20T9QFs_mMHiKTlqTZfw7K9Oydvd7WL-UDy93D_Or58KK4TaFkoY0QgLnFspWys5tKqdwUw6ZaxUgjMlqt0s62VjGrcE06DgS1aB4Vipakou9nc3MXyMmLa698li15kBw5g0yzDIRtZVjlb7qI0hpYit3kTfm_itGeidQ73Wvw71zqFmXGeHmbraU5i_-MxydLIe84fOR7Rb7YL_l_8B6v16aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808069653</pqid></control><display><type>article</type><title>Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ruijter, M.J. ; Oosterlee, C.W.</creator><creatorcontrib>Ruijter, M.J. ; Oosterlee, C.W.</creatorcontrib><description>We develop a Fourier method to solve quite general backward stochastic differential equations (BSDEs) with second-order accuracy. The underlying forward stochastic differential equation (FSDE) is approximated by different Taylor schemes, such as the Euler, Milstein, and Order 2.0 weak Taylor schemes, or by exact simulation. A θ-time-discretization of the time-integrands leads to an induction scheme with conditional expectations. The computation of the conditional expectations appearing relies on the availability of the characteristic function for these schemes. We will use the characteristic function of the discrete forward process. The expected values are approximated by Fourier cosine series expansions. Numerical experiments show rapid convergence of our efficient probabilistic numerical method. Second-order accuracy is observed and also proved. We apply the method to, among others, option pricing problems under the Constant Elasticity of Variance and Cox–Ingersoll–Ross processes.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2015.12.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accuracy ; Approximation ; Backward stochastic differential equations ; CEV process ; Characteristic function ; CIR process ; Differential equations ; European and Bermudan options ; Fourier analysis ; Fourier cosine expansion method ; Fourier series ; Local volatility ; Mathematical analysis ; Mathematical models ; Milstein scheme ; Order 2.0 weak Taylor scheme ; Stochasticity</subject><ispartof>Applied numerical mathematics, 2016-05, Vol.103, p.1-26</ispartof><rights>2016 IMACS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-74a494c022c66fc620f7f8086d7ac67421743808665b9a9db0a9e42b130a2e373</citedby><cites>FETCH-LOGICAL-c447t-74a494c022c66fc620f7f8086d7ac67421743808665b9a9db0a9e42b130a2e373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apnum.2015.12.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Ruijter, M.J.</creatorcontrib><creatorcontrib>Oosterlee, C.W.</creatorcontrib><title>Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance</title><title>Applied numerical mathematics</title><description>We develop a Fourier method to solve quite general backward stochastic differential equations (BSDEs) with second-order accuracy. The underlying forward stochastic differential equation (FSDE) is approximated by different Taylor schemes, such as the Euler, Milstein, and Order 2.0 weak Taylor schemes, or by exact simulation. A θ-time-discretization of the time-integrands leads to an induction scheme with conditional expectations. The computation of the conditional expectations appearing relies on the availability of the characteristic function for these schemes. We will use the characteristic function of the discrete forward process. The expected values are approximated by Fourier cosine series expansions. Numerical experiments show rapid convergence of our efficient probabilistic numerical method. Second-order accuracy is observed and also proved. We apply the method to, among others, option pricing problems under the Constant Elasticity of Variance and Cox–Ingersoll–Ross processes.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Backward stochastic differential equations</subject><subject>CEV process</subject><subject>Characteristic function</subject><subject>CIR process</subject><subject>Differential equations</subject><subject>European and Bermudan options</subject><subject>Fourier analysis</subject><subject>Fourier cosine expansion method</subject><subject>Fourier series</subject><subject>Local volatility</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Milstein scheme</subject><subject>Order 2.0 weak Taylor scheme</subject><subject>Stochasticity</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1g8siScHcduBgZUPiUEA2W2XPuiuiRxsRsQ_x6XMjPdh97npHsIOWdQMmDycl2azTD2JQdWl4yXANUBmbCZqopaSDgkk5yaFQ1X4picpLQGgLoWMCGL57HH6K3p6F0Yo8dIe9yugqNmcDShDYMrQnR5vzDfXYg02RX2SNvcLo19_zLR0deb20T9QFs_mMHiKTlqTZfw7K9Oydvd7WL-UDy93D_Or58KK4TaFkoY0QgLnFspWys5tKqdwUw6ZaxUgjMlqt0s62VjGrcE06DgS1aB4Vipakou9nc3MXyMmLa698li15kBw5g0yzDIRtZVjlb7qI0hpYit3kTfm_itGeidQ73Wvw71zqFmXGeHmbraU5i_-MxydLIe84fOR7Rb7YL_l_8B6v16aw</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Ruijter, M.J.</creator><creator>Oosterlee, C.W.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201605</creationdate><title>Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance</title><author>Ruijter, M.J. ; Oosterlee, C.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-74a494c022c66fc620f7f8086d7ac67421743808665b9a9db0a9e42b130a2e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Backward stochastic differential equations</topic><topic>CEV process</topic><topic>Characteristic function</topic><topic>CIR process</topic><topic>Differential equations</topic><topic>European and Bermudan options</topic><topic>Fourier analysis</topic><topic>Fourier cosine expansion method</topic><topic>Fourier series</topic><topic>Local volatility</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Milstein scheme</topic><topic>Order 2.0 weak Taylor scheme</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruijter, M.J.</creatorcontrib><creatorcontrib>Oosterlee, C.W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruijter, M.J.</au><au>Oosterlee, C.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance</atitle><jtitle>Applied numerical mathematics</jtitle><date>2016-05</date><risdate>2016</risdate><volume>103</volume><spage>1</spage><epage>26</epage><pages>1-26</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><abstract>We develop a Fourier method to solve quite general backward stochastic differential equations (BSDEs) with second-order accuracy. The underlying forward stochastic differential equation (FSDE) is approximated by different Taylor schemes, such as the Euler, Milstein, and Order 2.0 weak Taylor schemes, or by exact simulation. A θ-time-discretization of the time-integrands leads to an induction scheme with conditional expectations. The computation of the conditional expectations appearing relies on the availability of the characteristic function for these schemes. We will use the characteristic function of the discrete forward process. The expected values are approximated by Fourier cosine series expansions. Numerical experiments show rapid convergence of our efficient probabilistic numerical method. Second-order accuracy is observed and also proved. We apply the method to, among others, option pricing problems under the Constant Elasticity of Variance and Cox–Ingersoll–Ross processes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2015.12.003</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9274 |
ispartof | Applied numerical mathematics, 2016-05, Vol.103, p.1-26 |
issn | 0168-9274 1873-5460 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808069653 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Accuracy Approximation Backward stochastic differential equations CEV process Characteristic function CIR process Differential equations European and Bermudan options Fourier analysis Fourier cosine expansion method Fourier series Local volatility Mathematical analysis Mathematical models Milstein scheme Order 2.0 weak Taylor scheme Stochasticity |
title | Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Fourier%20method%20and%20second-order%20Taylor%20scheme%20for%20backward%20SDEs%20in%20finance&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Ruijter,%20M.J.&rft.date=2016-05&rft.volume=103&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.issn=0168-9274&rft.eissn=1873-5460&rft_id=info:doi/10.1016/j.apnum.2015.12.003&rft_dat=%3Cproquest_cross%3E1808069653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808069653&rft_id=info:pmid/&rft_els_id=S0168927416000040&rfr_iscdi=true |