Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance

We develop a Fourier method to solve quite general backward stochastic differential equations (BSDEs) with second-order accuracy. The underlying forward stochastic differential equation (FSDE) is approximated by different Taylor schemes, such as the Euler, Milstein, and Order 2.0 weak Taylor schemes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics 2016-05, Vol.103, p.1-26
Hauptverfasser: Ruijter, M.J., Oosterlee, C.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue
container_start_page 1
container_title Applied numerical mathematics
container_volume 103
creator Ruijter, M.J.
Oosterlee, C.W.
description We develop a Fourier method to solve quite general backward stochastic differential equations (BSDEs) with second-order accuracy. The underlying forward stochastic differential equation (FSDE) is approximated by different Taylor schemes, such as the Euler, Milstein, and Order 2.0 weak Taylor schemes, or by exact simulation. A θ-time-discretization of the time-integrands leads to an induction scheme with conditional expectations. The computation of the conditional expectations appearing relies on the availability of the characteristic function for these schemes. We will use the characteristic function of the discrete forward process. The expected values are approximated by Fourier cosine series expansions. Numerical experiments show rapid convergence of our efficient probabilistic numerical method. Second-order accuracy is observed and also proved. We apply the method to, among others, option pricing problems under the Constant Elasticity of Variance and Cox–Ingersoll–Ross processes.
doi_str_mv 10.1016/j.apnum.2015.12.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808069653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927416000040</els_id><sourcerecordid>1808069653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-74a494c022c66fc620f7f8086d7ac67421743808665b9a9db0a9e42b130a2e373</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1g8siScHcduBgZUPiUEA2W2XPuiuiRxsRsQ_x6XMjPdh97npHsIOWdQMmDycl2azTD2JQdWl4yXANUBmbCZqopaSDgkk5yaFQ1X4picpLQGgLoWMCGL57HH6K3p6F0Yo8dIe9yugqNmcDShDYMrQnR5vzDfXYg02RX2SNvcLo19_zLR0deb20T9QFs_mMHiKTlqTZfw7K9Oydvd7WL-UDy93D_Or58KK4TaFkoY0QgLnFspWys5tKqdwUw6ZaxUgjMlqt0s62VjGrcE06DgS1aB4Vipakou9nc3MXyMmLa698li15kBw5g0yzDIRtZVjlb7qI0hpYit3kTfm_itGeidQ73Wvw71zqFmXGeHmbraU5i_-MxydLIe84fOR7Rb7YL_l_8B6v16aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808069653</pqid></control><display><type>article</type><title>Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ruijter, M.J. ; Oosterlee, C.W.</creator><creatorcontrib>Ruijter, M.J. ; Oosterlee, C.W.</creatorcontrib><description>We develop a Fourier method to solve quite general backward stochastic differential equations (BSDEs) with second-order accuracy. The underlying forward stochastic differential equation (FSDE) is approximated by different Taylor schemes, such as the Euler, Milstein, and Order 2.0 weak Taylor schemes, or by exact simulation. A θ-time-discretization of the time-integrands leads to an induction scheme with conditional expectations. The computation of the conditional expectations appearing relies on the availability of the characteristic function for these schemes. We will use the characteristic function of the discrete forward process. The expected values are approximated by Fourier cosine series expansions. Numerical experiments show rapid convergence of our efficient probabilistic numerical method. Second-order accuracy is observed and also proved. We apply the method to, among others, option pricing problems under the Constant Elasticity of Variance and Cox–Ingersoll–Ross processes.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2015.12.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accuracy ; Approximation ; Backward stochastic differential equations ; CEV process ; Characteristic function ; CIR process ; Differential equations ; European and Bermudan options ; Fourier analysis ; Fourier cosine expansion method ; Fourier series ; Local volatility ; Mathematical analysis ; Mathematical models ; Milstein scheme ; Order 2.0 weak Taylor scheme ; Stochasticity</subject><ispartof>Applied numerical mathematics, 2016-05, Vol.103, p.1-26</ispartof><rights>2016 IMACS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-74a494c022c66fc620f7f8086d7ac67421743808665b9a9db0a9e42b130a2e373</citedby><cites>FETCH-LOGICAL-c447t-74a494c022c66fc620f7f8086d7ac67421743808665b9a9db0a9e42b130a2e373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apnum.2015.12.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Ruijter, M.J.</creatorcontrib><creatorcontrib>Oosterlee, C.W.</creatorcontrib><title>Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance</title><title>Applied numerical mathematics</title><description>We develop a Fourier method to solve quite general backward stochastic differential equations (BSDEs) with second-order accuracy. The underlying forward stochastic differential equation (FSDE) is approximated by different Taylor schemes, such as the Euler, Milstein, and Order 2.0 weak Taylor schemes, or by exact simulation. A θ-time-discretization of the time-integrands leads to an induction scheme with conditional expectations. The computation of the conditional expectations appearing relies on the availability of the characteristic function for these schemes. We will use the characteristic function of the discrete forward process. The expected values are approximated by Fourier cosine series expansions. Numerical experiments show rapid convergence of our efficient probabilistic numerical method. Second-order accuracy is observed and also proved. We apply the method to, among others, option pricing problems under the Constant Elasticity of Variance and Cox–Ingersoll–Ross processes.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Backward stochastic differential equations</subject><subject>CEV process</subject><subject>Characteristic function</subject><subject>CIR process</subject><subject>Differential equations</subject><subject>European and Bermudan options</subject><subject>Fourier analysis</subject><subject>Fourier cosine expansion method</subject><subject>Fourier series</subject><subject>Local volatility</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Milstein scheme</subject><subject>Order 2.0 weak Taylor scheme</subject><subject>Stochasticity</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1g8siScHcduBgZUPiUEA2W2XPuiuiRxsRsQ_x6XMjPdh97npHsIOWdQMmDycl2azTD2JQdWl4yXANUBmbCZqopaSDgkk5yaFQ1X4picpLQGgLoWMCGL57HH6K3p6F0Yo8dIe9yugqNmcDShDYMrQnR5vzDfXYg02RX2SNvcLo19_zLR0deb20T9QFs_mMHiKTlqTZfw7K9Oydvd7WL-UDy93D_Or58KK4TaFkoY0QgLnFspWys5tKqdwUw6ZaxUgjMlqt0s62VjGrcE06DgS1aB4Vipakou9nc3MXyMmLa698li15kBw5g0yzDIRtZVjlb7qI0hpYit3kTfm_itGeidQ73Wvw71zqFmXGeHmbraU5i_-MxydLIe84fOR7Rb7YL_l_8B6v16aw</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Ruijter, M.J.</creator><creator>Oosterlee, C.W.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201605</creationdate><title>Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance</title><author>Ruijter, M.J. ; Oosterlee, C.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-74a494c022c66fc620f7f8086d7ac67421743808665b9a9db0a9e42b130a2e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Backward stochastic differential equations</topic><topic>CEV process</topic><topic>Characteristic function</topic><topic>CIR process</topic><topic>Differential equations</topic><topic>European and Bermudan options</topic><topic>Fourier analysis</topic><topic>Fourier cosine expansion method</topic><topic>Fourier series</topic><topic>Local volatility</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Milstein scheme</topic><topic>Order 2.0 weak Taylor scheme</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruijter, M.J.</creatorcontrib><creatorcontrib>Oosterlee, C.W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruijter, M.J.</au><au>Oosterlee, C.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance</atitle><jtitle>Applied numerical mathematics</jtitle><date>2016-05</date><risdate>2016</risdate><volume>103</volume><spage>1</spage><epage>26</epage><pages>1-26</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><abstract>We develop a Fourier method to solve quite general backward stochastic differential equations (BSDEs) with second-order accuracy. The underlying forward stochastic differential equation (FSDE) is approximated by different Taylor schemes, such as the Euler, Milstein, and Order 2.0 weak Taylor schemes, or by exact simulation. A θ-time-discretization of the time-integrands leads to an induction scheme with conditional expectations. The computation of the conditional expectations appearing relies on the availability of the characteristic function for these schemes. We will use the characteristic function of the discrete forward process. The expected values are approximated by Fourier cosine series expansions. Numerical experiments show rapid convergence of our efficient probabilistic numerical method. Second-order accuracy is observed and also proved. We apply the method to, among others, option pricing problems under the Constant Elasticity of Variance and Cox–Ingersoll–Ross processes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2015.12.003</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9274
ispartof Applied numerical mathematics, 2016-05, Vol.103, p.1-26
issn 0168-9274
1873-5460
language eng
recordid cdi_proquest_miscellaneous_1808069653
source ScienceDirect Journals (5 years ago - present)
subjects Accuracy
Approximation
Backward stochastic differential equations
CEV process
Characteristic function
CIR process
Differential equations
European and Bermudan options
Fourier analysis
Fourier cosine expansion method
Fourier series
Local volatility
Mathematical analysis
Mathematical models
Milstein scheme
Order 2.0 weak Taylor scheme
Stochasticity
title Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Fourier%20method%20and%20second-order%20Taylor%20scheme%20for%20backward%20SDEs%20in%20finance&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Ruijter,%20M.J.&rft.date=2016-05&rft.volume=103&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.issn=0168-9274&rft.eissn=1873-5460&rft_id=info:doi/10.1016/j.apnum.2015.12.003&rft_dat=%3Cproquest_cross%3E1808069653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808069653&rft_id=info:pmid/&rft_els_id=S0168927416000040&rfr_iscdi=true