Estimates for solutions of linear and quasilinear systems in the nonautonomous case

By using the freezing method, we obtain upper and lower estimates for the higher and lower characteristic exponents, respectively, of homogeneous n-dimensional linear differential and difference systems with coefficient matrix A ( t ) satisfying the condition || A ( t )− A ( s )|| ≤ δ | t − s | α ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2016-02, Vol.52 (2), p.177-185
1. Verfasser: Lasunskii, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 2
container_start_page 177
container_title Differential equations
container_volume 52
creator Lasunskii, A. V.
description By using the freezing method, we obtain upper and lower estimates for the higher and lower characteristic exponents, respectively, of homogeneous n-dimensional linear differential and difference systems with coefficient matrix A ( t ) satisfying the condition || A ( t )− A ( s )|| ≤ δ | t − s | α , δ > 0, α > 0, t , s ≥ 0. We also prove analogs of these estimates for quasilinear differential and difference systems.
doi_str_mv 10.1134/S001226611602004X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808069293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808069293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d83be3f279245edbfdc912684c4b0aba6fbc10a0def0f7a25ba43ca0c4f7f7933</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hZ4sIlsH7ESY6oKg-pEoeCxC1yHBtSpXbrdQ7996SUAwJx2l3NN6vREHLJ4IYxIW-XAIxzpRhTwAHk2xGZjGuZCSjFMZns5Wyvn5IzxBUAVAXLJ2Q5x9StdbJIXYgUQz-kLnikwdG-81ZHqn1Lt4PG7vvGHSa7Rtp5mj4s9cHrIQUf1mFAajTac3LidI_24ntOyev9_GX2mC2eH55md4vMCFmlrC1FY4XjRcVlbtvGtaZiXJXSyAZ0o5VrDAMNrXXgCs3zRkthNBjpCldUQkzJ9eHvJobtYDHV6w6N7Xvt7ZilZiWUoCr-hV79QldhiH5MV7OiUEWZc5WPFDtQJgbEaF29iWM5cVczqPc1139qHj384MGR9e82_vj8r-kTFPSAFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1776785265</pqid></control><display><type>article</type><title>Estimates for solutions of linear and quasilinear systems in the nonautonomous case</title><source>SpringerNature Journals</source><creator>Lasunskii, A. V.</creator><creatorcontrib>Lasunskii, A. V.</creatorcontrib><description>By using the freezing method, we obtain upper and lower estimates for the higher and lower characteristic exponents, respectively, of homogeneous n-dimensional linear differential and difference systems with coefficient matrix A ( t ) satisfying the condition || A ( t )− A ( s )|| ≤ δ | t − s | α , δ &gt; 0, α &gt; 0, t , s ≥ 0. We also prove analogs of these estimates for quasilinear differential and difference systems.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S001226611602004X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analogs ; Coefficients ; Difference and Functional Equations ; Differential equations ; Eigenvalues ; Estimates ; Exponents ; Freezing ; Inequality ; Linear equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Studies</subject><ispartof>Differential equations, 2016-02, Vol.52 (2), p.177-185</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d83be3f279245edbfdc912684c4b0aba6fbc10a0def0f7a25ba43ca0c4f7f7933</citedby><cites>FETCH-LOGICAL-c349t-d83be3f279245edbfdc912684c4b0aba6fbc10a0def0f7a25ba43ca0c4f7f7933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S001226611602004X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S001226611602004X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lasunskii, A. V.</creatorcontrib><title>Estimates for solutions of linear and quasilinear systems in the nonautonomous case</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>By using the freezing method, we obtain upper and lower estimates for the higher and lower characteristic exponents, respectively, of homogeneous n-dimensional linear differential and difference systems with coefficient matrix A ( t ) satisfying the condition || A ( t )− A ( s )|| ≤ δ | t − s | α , δ &gt; 0, α &gt; 0, t , s ≥ 0. We also prove analogs of these estimates for quasilinear differential and difference systems.</description><subject>Analogs</subject><subject>Coefficients</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Estimates</subject><subject>Exponents</subject><subject>Freezing</subject><subject>Inequality</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Studies</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtPwzAQhC0EEqXwA7hZ4sIlsH7ESY6oKg-pEoeCxC1yHBtSpXbrdQ7996SUAwJx2l3NN6vREHLJ4IYxIW-XAIxzpRhTwAHk2xGZjGuZCSjFMZns5Wyvn5IzxBUAVAXLJ2Q5x9StdbJIXYgUQz-kLnikwdG-81ZHqn1Lt4PG7vvGHSa7Rtp5mj4s9cHrIQUf1mFAajTac3LidI_24ntOyev9_GX2mC2eH55md4vMCFmlrC1FY4XjRcVlbtvGtaZiXJXSyAZ0o5VrDAMNrXXgCs3zRkthNBjpCldUQkzJ9eHvJobtYDHV6w6N7Xvt7ZilZiWUoCr-hV79QldhiH5MV7OiUEWZc5WPFDtQJgbEaF29iWM5cVczqPc1139qHj384MGR9e82_vj8r-kTFPSAFQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Lasunskii, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20160201</creationdate><title>Estimates for solutions of linear and quasilinear systems in the nonautonomous case</title><author>Lasunskii, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d83be3f279245edbfdc912684c4b0aba6fbc10a0def0f7a25ba43ca0c4f7f7933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analogs</topic><topic>Coefficients</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Estimates</topic><topic>Exponents</topic><topic>Freezing</topic><topic>Inequality</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lasunskii, A. V.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasunskii, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates for solutions of linear and quasilinear systems in the nonautonomous case</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>52</volume><issue>2</issue><spage>177</spage><epage>185</epage><pages>177-185</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>By using the freezing method, we obtain upper and lower estimates for the higher and lower characteristic exponents, respectively, of homogeneous n-dimensional linear differential and difference systems with coefficient matrix A ( t ) satisfying the condition || A ( t )− A ( s )|| ≤ δ | t − s | α , δ &gt; 0, α &gt; 0, t , s ≥ 0. We also prove analogs of these estimates for quasilinear differential and difference systems.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S001226611602004X</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2016-02, Vol.52 (2), p.177-185
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_miscellaneous_1808069293
source SpringerNature Journals
subjects Analogs
Coefficients
Difference and Functional Equations
Differential equations
Eigenvalues
Estimates
Exponents
Freezing
Inequality
Linear equations
Mathematical analysis
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Studies
title Estimates for solutions of linear and quasilinear systems in the nonautonomous case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20for%20solutions%20of%20linear%20and%20quasilinear%20systems%20in%20the%20nonautonomous%20case&rft.jtitle=Differential%20equations&rft.au=Lasunskii,%20A.%20V.&rft.date=2016-02-01&rft.volume=52&rft.issue=2&rft.spage=177&rft.epage=185&rft.pages=177-185&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S001226611602004X&rft_dat=%3Cproquest_cross%3E1808069293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1776785265&rft_id=info:pmid/&rfr_iscdi=true