Biomass-Derived Electrode for Next Generation Lithium-Ion Capacitors

We report the fabrication of a carbon‐based high energy density Li‐ion hybrid electrochemical capacitor (Li‐HEC) from low cost and eco‐friendly materials. High surface area (2448±20 m2 g−1) activated carbon (AC) is derived from the environmentally threatening plant, Prosopis juliflora, and used as t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2016-04, Vol.9 (8), p.849-854
Hauptverfasser: Sennu, Palanichamy, Aravindan, Vanchiappan, Ganesan, Mahadevan, Lee, Young-Gi, Lee, Yun-Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue 8
container_start_page 849
container_title ChemSusChem
container_volume 9
creator Sennu, Palanichamy
Aravindan, Vanchiappan
Ganesan, Mahadevan
Lee, Young-Gi
Lee, Yun-Sung
description We report the fabrication of a carbon‐based high energy density Li‐ion hybrid electrochemical capacitor (Li‐HEC) from low cost and eco‐friendly materials. High surface area (2448±20 m2 g−1) activated carbon (AC) is derived from the environmentally threatening plant, Prosopis juliflora, and used as the positive electrode in a Li‐HEC assembly. Natural graphite is employed as negative electrode and electrochemically pre‐lithiated prior to the Li‐HEC fabrication. The Li‐HEC delivers a specific energy of 162.3 Wh kg−1 and exhibits excellent cyclability (i.e., ∼79 % of initial capacity is retained after 7000 cycles). The superior electrochemical performance of Li‐HEC benefits from the tube‐like unique structural features of the AC. Also, the presence of a graphitic nanocarbon network improves the ion transport, and the formed micro‐ and meso‐porous network acts as reservoir for the accommodation of charge carriers. Plant‐based capacitors: Carbon‐based high energy density Li‐ion hybrid electrochemical capacitors (Li‐HEC) are fabricated using carbons derived from an environmentally threatening plant. Superior electrochemical performance is achieved owing to the tube‐like unique structural features of the derived activated carbon material and the presence of a graphitic nanocarbon network, which improves the ion transport and acts as reservoir for the accommodation of charge carriers.
doi_str_mv 10.1002/cssc.201501621
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808068130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808068130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5511-78aeaff6f1b0a0d4df15200919c506f175db5579c149ef4b4c15e91af684215f3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEoqVw5YgiceGS7UxiO_YR0naptFoOW7TcLK8zFi7JerET2v57stqyqrj0MJrR6HtPmnlZ9h5hhgDluU3JzkpADihKfJGdohSs4IL9eHmcKzzJ3qR0CyBACfE6OymFUjDVaXbxxYfepFRcUPR_qM0vO7JDDC3lLsR8SfdDPqctRTP4sM0Xfvjpx764nubG7Iz1Q4jpbfbKmS7Ru8d-ln2_urxpvhaLb_Pr5vOisJwjFrU0ZJwTDjdgoGWtQ14CKFSWw7StebvhvFYWmSLHNswiJ4XGCclK5K46yz4dfHcx_B4pDbr3yVLXmS2FMWmUIEFIrOB5tJasZjVyOaEf_0Nvwxi30yF7qlIMpCwnanagbAwpRXJ6F31v4oNG0Pso9D4KfYxiEnx4tB03PbVH_N_vJ0AdgDvf0cMzdrpZrZqn5sVB69NA90etib-0qKua6_VyrperG1gv142uqr9zdqK7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783940882</pqid></control><display><type>article</type><title>Biomass-Derived Electrode for Next Generation Lithium-Ion Capacitors</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sennu, Palanichamy ; Aravindan, Vanchiappan ; Ganesan, Mahadevan ; Lee, Young-Gi ; Lee, Yun-Sung</creator><creatorcontrib>Sennu, Palanichamy ; Aravindan, Vanchiappan ; Ganesan, Mahadevan ; Lee, Young-Gi ; Lee, Yun-Sung</creatorcontrib><description>We report the fabrication of a carbon‐based high energy density Li‐ion hybrid electrochemical capacitor (Li‐HEC) from low cost and eco‐friendly materials. High surface area (2448±20 m2 g−1) activated carbon (AC) is derived from the environmentally threatening plant, Prosopis juliflora, and used as the positive electrode in a Li‐HEC assembly. Natural graphite is employed as negative electrode and electrochemically pre‐lithiated prior to the Li‐HEC fabrication. The Li‐HEC delivers a specific energy of 162.3 Wh kg−1 and exhibits excellent cyclability (i.e., ∼79 % of initial capacity is retained after 7000 cycles). The superior electrochemical performance of Li‐HEC benefits from the tube‐like unique structural features of the AC. Also, the presence of a graphitic nanocarbon network improves the ion transport, and the formed micro‐ and meso‐porous network acts as reservoir for the accommodation of charge carriers. Plant‐based capacitors: Carbon‐based high energy density Li‐ion hybrid electrochemical capacitors (Li‐HEC) are fabricated using carbons derived from an environmentally threatening plant. Superior electrochemical performance is achieved owing to the tube‐like unique structural features of the derived activated carbon material and the presence of a graphitic nanocarbon network, which improves the ion transport and acts as reservoir for the accommodation of charge carriers.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201501621</identifier><identifier>PMID: 26990699</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Accommodation ; activated carbon ; Biomass ; Capacitors ; Carbon - chemistry ; Electric Power Supplies ; Electrodes ; Energy density ; Fabaceae ; graphene ; Ion transport ; Li-ion capacitor ; Lithium - chemistry ; Nanostructure ; Reservoirs ; Surface Properties ; Transportation networks</subject><ispartof>ChemSusChem, 2016-04, Vol.9 (8), p.849-854</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5511-78aeaff6f1b0a0d4df15200919c506f175db5579c149ef4b4c15e91af684215f3</citedby><cites>FETCH-LOGICAL-c5511-78aeaff6f1b0a0d4df15200919c506f175db5579c149ef4b4c15e91af684215f3</cites><orcidid>0000-0003-1357-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201501621$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201501621$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26990699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sennu, Palanichamy</creatorcontrib><creatorcontrib>Aravindan, Vanchiappan</creatorcontrib><creatorcontrib>Ganesan, Mahadevan</creatorcontrib><creatorcontrib>Lee, Young-Gi</creatorcontrib><creatorcontrib>Lee, Yun-Sung</creatorcontrib><title>Biomass-Derived Electrode for Next Generation Lithium-Ion Capacitors</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>We report the fabrication of a carbon‐based high energy density Li‐ion hybrid electrochemical capacitor (Li‐HEC) from low cost and eco‐friendly materials. High surface area (2448±20 m2 g−1) activated carbon (AC) is derived from the environmentally threatening plant, Prosopis juliflora, and used as the positive electrode in a Li‐HEC assembly. Natural graphite is employed as negative electrode and electrochemically pre‐lithiated prior to the Li‐HEC fabrication. The Li‐HEC delivers a specific energy of 162.3 Wh kg−1 and exhibits excellent cyclability (i.e., ∼79 % of initial capacity is retained after 7000 cycles). The superior electrochemical performance of Li‐HEC benefits from the tube‐like unique structural features of the AC. Also, the presence of a graphitic nanocarbon network improves the ion transport, and the formed micro‐ and meso‐porous network acts as reservoir for the accommodation of charge carriers. Plant‐based capacitors: Carbon‐based high energy density Li‐ion hybrid electrochemical capacitors (Li‐HEC) are fabricated using carbons derived from an environmentally threatening plant. Superior electrochemical performance is achieved owing to the tube‐like unique structural features of the derived activated carbon material and the presence of a graphitic nanocarbon network, which improves the ion transport and acts as reservoir for the accommodation of charge carriers.</description><subject>Accommodation</subject><subject>activated carbon</subject><subject>Biomass</subject><subject>Capacitors</subject><subject>Carbon - chemistry</subject><subject>Electric Power Supplies</subject><subject>Electrodes</subject><subject>Energy density</subject><subject>Fabaceae</subject><subject>graphene</subject><subject>Ion transport</subject><subject>Li-ion capacitor</subject><subject>Lithium - chemistry</subject><subject>Nanostructure</subject><subject>Reservoirs</subject><subject>Surface Properties</subject><subject>Transportation networks</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhSMEoqVw5YgiceGS7UxiO_YR0naptFoOW7TcLK8zFi7JerET2v57stqyqrj0MJrR6HtPmnlZ9h5hhgDluU3JzkpADihKfJGdohSs4IL9eHmcKzzJ3qR0CyBACfE6OymFUjDVaXbxxYfepFRcUPR_qM0vO7JDDC3lLsR8SfdDPqctRTP4sM0Xfvjpx764nubG7Iz1Q4jpbfbKmS7Ru8d-ln2_urxpvhaLb_Pr5vOisJwjFrU0ZJwTDjdgoGWtQ14CKFSWw7StebvhvFYWmSLHNswiJ4XGCclK5K46yz4dfHcx_B4pDbr3yVLXmS2FMWmUIEFIrOB5tJasZjVyOaEf_0Nvwxi30yF7qlIMpCwnanagbAwpRXJ6F31v4oNG0Pso9D4KfYxiEnx4tB03PbVH_N_vJ0AdgDvf0cMzdrpZrZqn5sVB69NA90etib-0qKua6_VyrperG1gv142uqr9zdqK7</recordid><startdate>20160421</startdate><enddate>20160421</enddate><creator>Sennu, Palanichamy</creator><creator>Aravindan, Vanchiappan</creator><creator>Ganesan, Mahadevan</creator><creator>Lee, Young-Gi</creator><creator>Lee, Yun-Sung</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1357-7717</orcidid></search><sort><creationdate>20160421</creationdate><title>Biomass-Derived Electrode for Next Generation Lithium-Ion Capacitors</title><author>Sennu, Palanichamy ; Aravindan, Vanchiappan ; Ganesan, Mahadevan ; Lee, Young-Gi ; Lee, Yun-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5511-78aeaff6f1b0a0d4df15200919c506f175db5579c149ef4b4c15e91af684215f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accommodation</topic><topic>activated carbon</topic><topic>Biomass</topic><topic>Capacitors</topic><topic>Carbon - chemistry</topic><topic>Electric Power Supplies</topic><topic>Electrodes</topic><topic>Energy density</topic><topic>Fabaceae</topic><topic>graphene</topic><topic>Ion transport</topic><topic>Li-ion capacitor</topic><topic>Lithium - chemistry</topic><topic>Nanostructure</topic><topic>Reservoirs</topic><topic>Surface Properties</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sennu, Palanichamy</creatorcontrib><creatorcontrib>Aravindan, Vanchiappan</creatorcontrib><creatorcontrib>Ganesan, Mahadevan</creatorcontrib><creatorcontrib>Lee, Young-Gi</creatorcontrib><creatorcontrib>Lee, Yun-Sung</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sennu, Palanichamy</au><au>Aravindan, Vanchiappan</au><au>Ganesan, Mahadevan</au><au>Lee, Young-Gi</au><au>Lee, Yun-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomass-Derived Electrode for Next Generation Lithium-Ion Capacitors</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2016-04-21</date><risdate>2016</risdate><volume>9</volume><issue>8</issue><spage>849</spage><epage>854</epage><pages>849-854</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>We report the fabrication of a carbon‐based high energy density Li‐ion hybrid electrochemical capacitor (Li‐HEC) from low cost and eco‐friendly materials. High surface area (2448±20 m2 g−1) activated carbon (AC) is derived from the environmentally threatening plant, Prosopis juliflora, and used as the positive electrode in a Li‐HEC assembly. Natural graphite is employed as negative electrode and electrochemically pre‐lithiated prior to the Li‐HEC fabrication. The Li‐HEC delivers a specific energy of 162.3 Wh kg−1 and exhibits excellent cyclability (i.e., ∼79 % of initial capacity is retained after 7000 cycles). The superior electrochemical performance of Li‐HEC benefits from the tube‐like unique structural features of the AC. Also, the presence of a graphitic nanocarbon network improves the ion transport, and the formed micro‐ and meso‐porous network acts as reservoir for the accommodation of charge carriers. Plant‐based capacitors: Carbon‐based high energy density Li‐ion hybrid electrochemical capacitors (Li‐HEC) are fabricated using carbons derived from an environmentally threatening plant. Superior electrochemical performance is achieved owing to the tube‐like unique structural features of the derived activated carbon material and the presence of a graphitic nanocarbon network, which improves the ion transport and acts as reservoir for the accommodation of charge carriers.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>26990699</pmid><doi>10.1002/cssc.201501621</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1357-7717</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2016-04, Vol.9 (8), p.849-854
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_1808068130
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Accommodation
activated carbon
Biomass
Capacitors
Carbon - chemistry
Electric Power Supplies
Electrodes
Energy density
Fabaceae
graphene
Ion transport
Li-ion capacitor
Lithium - chemistry
Nanostructure
Reservoirs
Surface Properties
Transportation networks
title Biomass-Derived Electrode for Next Generation Lithium-Ion Capacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomass-Derived%20Electrode%20for%20Next%20Generation%20Lithium-Ion%20Capacitors&rft.jtitle=ChemSusChem&rft.au=Sennu,%20Palanichamy&rft.date=2016-04-21&rft.volume=9&rft.issue=8&rft.spage=849&rft.epage=854&rft.pages=849-854&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201501621&rft_dat=%3Cproquest_cross%3E1808068130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783940882&rft_id=info:pmid/26990699&rfr_iscdi=true