Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs

While achieving the spatial organization of cells within 3D assembled nanofiber/cell constructs via nanofiber‐enabled cell layering, the small sizes of inter‐fiber pores of the electrospun nanofiber mats could significantly limit cell penetration across the layers for rapid formation of an integrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2016-06, Vol.104 (6), p.1479-1488
Hauptverfasser: Mahjour, Seyed Babak, Sefat, Farshid, Polunin, Yevgeniy, Wang, Lichen, Wang, Hongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1488
container_issue 6
container_start_page 1479
container_title Journal of biomedical materials research. Part A
container_volume 104
creator Mahjour, Seyed Babak
Sefat, Farshid
Polunin, Yevgeniy
Wang, Lichen
Wang, Hongjun
description While achieving the spatial organization of cells within 3D assembled nanofiber/cell constructs via nanofiber‐enabled cell layering, the small sizes of inter‐fiber pores of the electrospun nanofiber mats could significantly limit cell penetration across the layers for rapid formation of an integrated tissue construct. To address this challenge, efforts were made to improve cell‐infiltration of electrospun nanofiber mats by modulating the density distribution and spatial organization of the fibers during electrospinning. Collection of collagen‐containing electrospun nanofibers (300–600 nm in diameter) onto the surface of a stainless steel metal mesh (1 mm × 1 mm in mesh size) led to the periodic alternation of fiber density from densely packed to loosely arranged distribution within the same mat, in which the densely packed fibers maintained the structural integrity while the region of loose fibers allowed for cell penetration. Along with improved cell infiltration, the distinct fiber organization between dense and loose fiber regions also induced different morphology of fibroblasts (stellate vs. elongated spindle‐like). Assembly of cell‐seeded nanofiber sheets into 3D constructs with such periodically organized nanofiber mats further demonstrated their advantages in improving cell penetration across layers in comparison to either random or aligned nanofiber mats. Taken together, modulation of nanofiber density to enlarge the pore size is effective to improve cell infiltration through electrospun mats for better tissue formation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1479–1488, 2016.
doi_str_mv 10.1002/jbm.a.35676
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808067451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787977514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6746-3fe495fa6c2e078b6fa5994fe796ccf3b4cc11d38f818e24fbdf7cc61b53052d3</originalsourceid><addsrcrecordid>eNqNkc9vFCEAhYmxsbV68m5IvDRpZoXh97Fu2tqmrR60eiMMAwnrzLACo-5_L9tte_CgnuDwvUceHwCvMFpghNq3q25cmAVhXPAn4AAz1jZUcfZ0e6eqIa3i--B5zqsKc8TaZ2C_5ZIyJPgBuL0Y1yn-cD20bhhgmHwYSjIlxAlGD93gbEkxr-cJTmaKPnQuwdGUDH1McDAbl2q2hJxnB22cckmzLfkF2PNmyO7l_XkIPp-dflq-b64-nF8sT64aywXlDfGOKuYNt61DQnbcG6YU9U4obq0nHbUW455IL7F0LfVd74W1HHeM1CU9OQRHu9464vvsctFjyNslZnJxzhpLJFF9iuF_o0IKJQTD9H9QKqisvRV98we6inOa6uYtRaoHJVSljneUrX-Zk_N6ncJo0kZjpLcSdZWojb6TWOnX951zN7r-kX2wVoF2B_wMg9v8rUtfvrs-eWhtdqGQi_v1GDLpm-aCCKa_3Jxr9hXdXn-8XOob8hs9HLcH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783965979</pqid></control><display><type>article</type><title>Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mahjour, Seyed Babak ; Sefat, Farshid ; Polunin, Yevgeniy ; Wang, Lichen ; Wang, Hongjun</creator><creatorcontrib>Mahjour, Seyed Babak ; Sefat, Farshid ; Polunin, Yevgeniy ; Wang, Lichen ; Wang, Hongjun</creatorcontrib><description>While achieving the spatial organization of cells within 3D assembled nanofiber/cell constructs via nanofiber‐enabled cell layering, the small sizes of inter‐fiber pores of the electrospun nanofiber mats could significantly limit cell penetration across the layers for rapid formation of an integrated tissue construct. To address this challenge, efforts were made to improve cell‐infiltration of electrospun nanofiber mats by modulating the density distribution and spatial organization of the fibers during electrospinning. Collection of collagen‐containing electrospun nanofibers (300–600 nm in diameter) onto the surface of a stainless steel metal mesh (1 mm × 1 mm in mesh size) led to the periodic alternation of fiber density from densely packed to loosely arranged distribution within the same mat, in which the densely packed fibers maintained the structural integrity while the region of loose fibers allowed for cell penetration. Along with improved cell infiltration, the distinct fiber organization between dense and loose fiber regions also induced different morphology of fibroblasts (stellate vs. elongated spindle‐like). Assembly of cell‐seeded nanofiber sheets into 3D constructs with such periodically organized nanofiber mats further demonstrated their advantages in improving cell penetration across layers in comparison to either random or aligned nanofiber mats. Taken together, modulation of nanofiber density to enlarge the pore size is effective to improve cell infiltration through electrospun mats for better tissue formation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1479–1488, 2016.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35676</identifier><identifier>PMID: 26845076</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; cell infiltration ; Cell Shape ; collagen ; Computer Simulation ; Construction ; Electricity ; Electrospinning ; Female ; Fibers ; Fibroblasts - cytology ; Infiltration ; layered tissue constructs ; Mats ; nanofibers ; Nanofibers - chemistry ; Nanofibers - ultrastructure ; Nanostructure ; Organizations ; Penetration ; polycaprolactone (PCL) ; Polyesters - chemistry ; Rats, Sprague-Dawley ; Time Factors ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2016-06, Vol.104 (6), p.1479-1488</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6746-3fe495fa6c2e078b6fa5994fe796ccf3b4cc11d38f818e24fbdf7cc61b53052d3</citedby><cites>FETCH-LOGICAL-c6746-3fe495fa6c2e078b6fa5994fe796ccf3b4cc11d38f818e24fbdf7cc61b53052d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35676$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35676$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26845076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahjour, Seyed Babak</creatorcontrib><creatorcontrib>Sefat, Farshid</creatorcontrib><creatorcontrib>Polunin, Yevgeniy</creatorcontrib><creatorcontrib>Wang, Lichen</creatorcontrib><creatorcontrib>Wang, Hongjun</creatorcontrib><title>Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>While achieving the spatial organization of cells within 3D assembled nanofiber/cell constructs via nanofiber‐enabled cell layering, the small sizes of inter‐fiber pores of the electrospun nanofiber mats could significantly limit cell penetration across the layers for rapid formation of an integrated tissue construct. To address this challenge, efforts were made to improve cell‐infiltration of electrospun nanofiber mats by modulating the density distribution and spatial organization of the fibers during electrospinning. Collection of collagen‐containing electrospun nanofibers (300–600 nm in diameter) onto the surface of a stainless steel metal mesh (1 mm × 1 mm in mesh size) led to the periodic alternation of fiber density from densely packed to loosely arranged distribution within the same mat, in which the densely packed fibers maintained the structural integrity while the region of loose fibers allowed for cell penetration. Along with improved cell infiltration, the distinct fiber organization between dense and loose fiber regions also induced different morphology of fibroblasts (stellate vs. elongated spindle‐like). Assembly of cell‐seeded nanofiber sheets into 3D constructs with such periodically organized nanofiber mats further demonstrated their advantages in improving cell penetration across layers in comparison to either random or aligned nanofiber mats. Taken together, modulation of nanofiber density to enlarge the pore size is effective to improve cell infiltration through electrospun mats for better tissue formation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1479–1488, 2016.</description><subject>Animals</subject><subject>cell infiltration</subject><subject>Cell Shape</subject><subject>collagen</subject><subject>Computer Simulation</subject><subject>Construction</subject><subject>Electricity</subject><subject>Electrospinning</subject><subject>Female</subject><subject>Fibers</subject><subject>Fibroblasts - cytology</subject><subject>Infiltration</subject><subject>layered tissue constructs</subject><subject>Mats</subject><subject>nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Nanofibers - ultrastructure</subject><subject>Nanostructure</subject><subject>Organizations</subject><subject>Penetration</subject><subject>polycaprolactone (PCL)</subject><subject>Polyesters - chemistry</subject><subject>Rats, Sprague-Dawley</subject><subject>Time Factors</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9vFCEAhYmxsbV68m5IvDRpZoXh97Fu2tqmrR60eiMMAwnrzLACo-5_L9tte_CgnuDwvUceHwCvMFpghNq3q25cmAVhXPAn4AAz1jZUcfZ0e6eqIa3i--B5zqsKc8TaZ2C_5ZIyJPgBuL0Y1yn-cD20bhhgmHwYSjIlxAlGD93gbEkxr-cJTmaKPnQuwdGUDH1McDAbl2q2hJxnB22cckmzLfkF2PNmyO7l_XkIPp-dflq-b64-nF8sT64aywXlDfGOKuYNt61DQnbcG6YU9U4obq0nHbUW455IL7F0LfVd74W1HHeM1CU9OQRHu9464vvsctFjyNslZnJxzhpLJFF9iuF_o0IKJQTD9H9QKqisvRV98we6inOa6uYtRaoHJVSljneUrX-Zk_N6ncJo0kZjpLcSdZWojb6TWOnX951zN7r-kX2wVoF2B_wMg9v8rUtfvrs-eWhtdqGQi_v1GDLpm-aCCKa_3Jxr9hXdXn-8XOob8hs9HLcH</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Mahjour, Seyed Babak</creator><creator>Sefat, Farshid</creator><creator>Polunin, Yevgeniy</creator><creator>Wang, Lichen</creator><creator>Wang, Hongjun</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201606</creationdate><title>Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs</title><author>Mahjour, Seyed Babak ; Sefat, Farshid ; Polunin, Yevgeniy ; Wang, Lichen ; Wang, Hongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6746-3fe495fa6c2e078b6fa5994fe796ccf3b4cc11d38f818e24fbdf7cc61b53052d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>cell infiltration</topic><topic>Cell Shape</topic><topic>collagen</topic><topic>Computer Simulation</topic><topic>Construction</topic><topic>Electricity</topic><topic>Electrospinning</topic><topic>Female</topic><topic>Fibers</topic><topic>Fibroblasts - cytology</topic><topic>Infiltration</topic><topic>layered tissue constructs</topic><topic>Mats</topic><topic>nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Nanofibers - ultrastructure</topic><topic>Nanostructure</topic><topic>Organizations</topic><topic>Penetration</topic><topic>polycaprolactone (PCL)</topic><topic>Polyesters - chemistry</topic><topic>Rats, Sprague-Dawley</topic><topic>Time Factors</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahjour, Seyed Babak</creatorcontrib><creatorcontrib>Sefat, Farshid</creatorcontrib><creatorcontrib>Polunin, Yevgeniy</creatorcontrib><creatorcontrib>Wang, Lichen</creatorcontrib><creatorcontrib>Wang, Hongjun</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahjour, Seyed Babak</au><au>Sefat, Farshid</au><au>Polunin, Yevgeniy</au><au>Wang, Lichen</au><au>Wang, Hongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2016-06</date><risdate>2016</risdate><volume>104</volume><issue>6</issue><spage>1479</spage><epage>1488</epage><pages>1479-1488</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>While achieving the spatial organization of cells within 3D assembled nanofiber/cell constructs via nanofiber‐enabled cell layering, the small sizes of inter‐fiber pores of the electrospun nanofiber mats could significantly limit cell penetration across the layers for rapid formation of an integrated tissue construct. To address this challenge, efforts were made to improve cell‐infiltration of electrospun nanofiber mats by modulating the density distribution and spatial organization of the fibers during electrospinning. Collection of collagen‐containing electrospun nanofibers (300–600 nm in diameter) onto the surface of a stainless steel metal mesh (1 mm × 1 mm in mesh size) led to the periodic alternation of fiber density from densely packed to loosely arranged distribution within the same mat, in which the densely packed fibers maintained the structural integrity while the region of loose fibers allowed for cell penetration. Along with improved cell infiltration, the distinct fiber organization between dense and loose fiber regions also induced different morphology of fibroblasts (stellate vs. elongated spindle‐like). Assembly of cell‐seeded nanofiber sheets into 3D constructs with such periodically organized nanofiber mats further demonstrated their advantages in improving cell penetration across layers in comparison to either random or aligned nanofiber mats. Taken together, modulation of nanofiber density to enlarge the pore size is effective to improve cell infiltration through electrospun mats for better tissue formation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1479–1488, 2016.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26845076</pmid><doi>10.1002/jbm.a.35676</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2016-06, Vol.104 (6), p.1479-1488
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1808067451
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
cell infiltration
Cell Shape
collagen
Computer Simulation
Construction
Electricity
Electrospinning
Female
Fibers
Fibroblasts - cytology
Infiltration
layered tissue constructs
Mats
nanofibers
Nanofibers - chemistry
Nanofibers - ultrastructure
Nanostructure
Organizations
Penetration
polycaprolactone (PCL)
Polyesters - chemistry
Rats, Sprague-Dawley
Time Factors
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20cell%20infiltration%20of%20electrospun%20nanofiber%20mats%20for%20layered%20tissue%20constructs&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Mahjour,%20Seyed%20Babak&rft.date=2016-06&rft.volume=104&rft.issue=6&rft.spage=1479&rft.epage=1488&rft.pages=1479-1488&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35676&rft_dat=%3Cproquest_cross%3E1787977514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783965979&rft_id=info:pmid/26845076&rfr_iscdi=true