Quantised kernel least mean square with desired signal smoothing

The quantised kernel least mean square (QKLMS) is a simple yet efficient online learning algorithm, which reduces the computational cost significantly by quantising the input space to constrain the growth of network size. The QKLMS considers only the input space compression and assumes that the desi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2015-09, Vol.51 (18), p.1457-1459
Hauptverfasser: Xu, Xiguang, Qu, Hua, Zhao, Jihong, Yang, Xiaohan, Chen, Badong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1459
container_issue 18
container_start_page 1457
container_title Electronics letters
container_volume 51
creator Xu, Xiguang
Qu, Hua
Zhao, Jihong
Yang, Xiaohan
Chen, Badong
description The quantised kernel least mean square (QKLMS) is a simple yet efficient online learning algorithm, which reduces the computational cost significantly by quantising the input space to constrain the growth of network size. The QKLMS considers only the input space compression and assumes that the desired outputs of the quantised data are equal to those of the closest centres. In many cases, however, the outputs in a neighbourhood may have big differences, especially when the underlying system is disturbed by impulsive noises. Such fluctuation in desired outputs may seriously deteriorate the learning performance. To address this issue, a simple online method is proposed to smooth the desired signal within a neighbourhood corresponding to a quantisation region. The resulting algorithm is referred to as the QKLMS with desired signal smoothing. The desirable performance of the new algorithm is confirmed by Monte Carlo simulations.
doi_str_mv 10.1049/el.2015.1757
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808066563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808066563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3766-d1ce9756474afe3ca3080875fdcfdc57351cabf8faacc17b4a493a1473520ded3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOOZufoAePHiwM69JmvWmjk2FgggK3kKWvm7RtN2SlrFvb8cEPajw4H94P_7v8SPkHOgYKM-u0Y0TCmIMUsgjMgAmaJwBvB2TAaXAYgEZPyWjEOyCAgeeUg4DcvPc6bq1AYvoA32NLnKoQxtVqOsobDrtMdradhUVGKzvqWCXtXZRqJqmXdl6eUZOSu0Cjr5ySF7ns5fpQ5w_3T9Ob_PYMJmmcQEGMylSLrkukRnN6IROpCgL04-QTIDRi3JSam0MyAXXPGMaeL9IaIEFG5LLQ-_aN5sOQ6sqGww6p2tsuqCgr6NpKlLWo1cH1PgmBI-lWntbab9TQNXelUKn9q7U3lWPiwO-tQ53_7JqlufJ3ZwmWZJ-f2SxVe9N53sv4a8TF7-gs_xH87oo2Sfe_4VB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808066563</pqid></control><display><type>article</type><title>Quantised kernel least mean square with desired signal smoothing</title><source>Wiley Online Library Open Access</source><creator>Xu, Xiguang ; Qu, Hua ; Zhao, Jihong ; Yang, Xiaohan ; Chen, Badong</creator><creatorcontrib>Xu, Xiguang ; Qu, Hua ; Zhao, Jihong ; Yang, Xiaohan ; Chen, Badong</creatorcontrib><description>The quantised kernel least mean square (QKLMS) is a simple yet efficient online learning algorithm, which reduces the computational cost significantly by quantising the input space to constrain the growth of network size. The QKLMS considers only the input space compression and assumes that the desired outputs of the quantised data are equal to those of the closest centres. In many cases, however, the outputs in a neighbourhood may have big differences, especially when the underlying system is disturbed by impulsive noises. Such fluctuation in desired outputs may seriously deteriorate the learning performance. To address this issue, a simple online method is proposed to smooth the desired signal within a neighbourhood corresponding to a quantisation region. The resulting algorithm is referred to as the QKLMS with desired signal smoothing. The desirable performance of the new algorithm is confirmed by Monte Carlo simulations.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2015.1757</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>Algorithms ; Computational efficiency ; Computer simulation ; Data compression ; desired signal smoothing ; input space compression ; Kernels ; learning (artificial intelligence) ; Least mean squares ; Least mean squares algorithm ; least mean squares methods ; Monte Carlo methods ; Monte Carlo simulations ; online learning algorithm ; QKLMS ; quantised kernel least mean square ; Signal processing ; Smoothing ; smoothing methods</subject><ispartof>Electronics letters, 2015-09, Vol.51 (18), p.1457-1459</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3766-d1ce9756474afe3ca3080875fdcfdc57351cabf8faacc17b4a493a1473520ded3</citedby><cites>FETCH-LOGICAL-c3766-d1ce9756474afe3ca3080875fdcfdc57351cabf8faacc17b4a493a1473520ded3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2015.1757$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2015.1757$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2015.1757$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Xu, Xiguang</creatorcontrib><creatorcontrib>Qu, Hua</creatorcontrib><creatorcontrib>Zhao, Jihong</creatorcontrib><creatorcontrib>Yang, Xiaohan</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><title>Quantised kernel least mean square with desired signal smoothing</title><title>Electronics letters</title><description>The quantised kernel least mean square (QKLMS) is a simple yet efficient online learning algorithm, which reduces the computational cost significantly by quantising the input space to constrain the growth of network size. The QKLMS considers only the input space compression and assumes that the desired outputs of the quantised data are equal to those of the closest centres. In many cases, however, the outputs in a neighbourhood may have big differences, especially when the underlying system is disturbed by impulsive noises. Such fluctuation in desired outputs may seriously deteriorate the learning performance. To address this issue, a simple online method is proposed to smooth the desired signal within a neighbourhood corresponding to a quantisation region. The resulting algorithm is referred to as the QKLMS with desired signal smoothing. The desirable performance of the new algorithm is confirmed by Monte Carlo simulations.</description><subject>Algorithms</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Data compression</subject><subject>desired signal smoothing</subject><subject>input space compression</subject><subject>Kernels</subject><subject>learning (artificial intelligence)</subject><subject>Least mean squares</subject><subject>Least mean squares algorithm</subject><subject>least mean squares methods</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulations</subject><subject>online learning algorithm</subject><subject>QKLMS</subject><subject>quantised kernel least mean square</subject><subject>Signal processing</subject><subject>Smoothing</subject><subject>smoothing methods</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOOZufoAePHiwM69JmvWmjk2FgggK3kKWvm7RtN2SlrFvb8cEPajw4H94P_7v8SPkHOgYKM-u0Y0TCmIMUsgjMgAmaJwBvB2TAaXAYgEZPyWjEOyCAgeeUg4DcvPc6bq1AYvoA32NLnKoQxtVqOsobDrtMdradhUVGKzvqWCXtXZRqJqmXdl6eUZOSu0Cjr5ySF7ns5fpQ5w_3T9Ob_PYMJmmcQEGMylSLrkukRnN6IROpCgL04-QTIDRi3JSam0MyAXXPGMaeL9IaIEFG5LLQ-_aN5sOQ6sqGww6p2tsuqCgr6NpKlLWo1cH1PgmBI-lWntbab9TQNXelUKn9q7U3lWPiwO-tQ53_7JqlufJ3ZwmWZJ-f2SxVe9N53sv4a8TF7-gs_xH87oo2Sfe_4VB</recordid><startdate>20150903</startdate><enddate>20150903</enddate><creator>Xu, Xiguang</creator><creator>Qu, Hua</creator><creator>Zhao, Jihong</creator><creator>Yang, Xiaohan</creator><creator>Chen, Badong</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20150903</creationdate><title>Quantised kernel least mean square with desired signal smoothing</title><author>Xu, Xiguang ; Qu, Hua ; Zhao, Jihong ; Yang, Xiaohan ; Chen, Badong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3766-d1ce9756474afe3ca3080875fdcfdc57351cabf8faacc17b4a493a1473520ded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Data compression</topic><topic>desired signal smoothing</topic><topic>input space compression</topic><topic>Kernels</topic><topic>learning (artificial intelligence)</topic><topic>Least mean squares</topic><topic>Least mean squares algorithm</topic><topic>least mean squares methods</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulations</topic><topic>online learning algorithm</topic><topic>QKLMS</topic><topic>quantised kernel least mean square</topic><topic>Signal processing</topic><topic>Smoothing</topic><topic>smoothing methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiguang</creatorcontrib><creatorcontrib>Qu, Hua</creatorcontrib><creatorcontrib>Zhao, Jihong</creatorcontrib><creatorcontrib>Yang, Xiaohan</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Xiguang</au><au>Qu, Hua</au><au>Zhao, Jihong</au><au>Yang, Xiaohan</au><au>Chen, Badong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantised kernel least mean square with desired signal smoothing</atitle><jtitle>Electronics letters</jtitle><date>2015-09-03</date><risdate>2015</risdate><volume>51</volume><issue>18</issue><spage>1457</spage><epage>1459</epage><pages>1457-1459</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>The quantised kernel least mean square (QKLMS) is a simple yet efficient online learning algorithm, which reduces the computational cost significantly by quantising the input space to constrain the growth of network size. The QKLMS considers only the input space compression and assumes that the desired outputs of the quantised data are equal to those of the closest centres. In many cases, however, the outputs in a neighbourhood may have big differences, especially when the underlying system is disturbed by impulsive noises. Such fluctuation in desired outputs may seriously deteriorate the learning performance. To address this issue, a simple online method is proposed to smooth the desired signal within a neighbourhood corresponding to a quantisation region. The resulting algorithm is referred to as the QKLMS with desired signal smoothing. The desirable performance of the new algorithm is confirmed by Monte Carlo simulations.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2015.1757</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0013-5194
ispartof Electronics letters, 2015-09, Vol.51 (18), p.1457-1459
issn 0013-5194
1350-911X
1350-911X
language eng
recordid cdi_proquest_miscellaneous_1808066563
source Wiley Online Library Open Access
subjects Algorithms
Computational efficiency
Computer simulation
Data compression
desired signal smoothing
input space compression
Kernels
learning (artificial intelligence)
Least mean squares
Least mean squares algorithm
least mean squares methods
Monte Carlo methods
Monte Carlo simulations
online learning algorithm
QKLMS
quantised kernel least mean square
Signal processing
Smoothing
smoothing methods
title Quantised kernel least mean square with desired signal smoothing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantised%20kernel%20least%20mean%20square%20with%20desired%20signal%20smoothing&rft.jtitle=Electronics%20letters&rft.au=Xu,%20Xiguang&rft.date=2015-09-03&rft.volume=51&rft.issue=18&rft.spage=1457&rft.epage=1459&rft.pages=1457-1459&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2015.1757&rft_dat=%3Cproquest_24P%3E1808066563%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808066563&rft_id=info:pmid/&rfr_iscdi=true