A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes

Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2016-05, Vol.150, p.702-714
Hauptverfasser: Sharma, Virender K., Johnson, Natalie, Cizmas, Leslie, McDonald, Thomas J., Kim, Hyunook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 714
container_issue
container_start_page 702
container_title Chemosphere (Oxford)
container_volume 150
creator Sharma, Virender K.
Johnson, Natalie
Cizmas, Leslie
McDonald, Thomas J.
Kim, Hyunook
description Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. •Prevalence of ARB and ARG in rivers, lakes, surface water, wastewater, and sludge.•Mechanism of resistance include horizontal gene transfer from donor bacteria.•Chlorine and advanced oxidation processes inactivate ARB and ARG significantly.•Flow pattern of the constructed wetlands governs removal of ARB and ARG.•Nanoparticles have a role in investigating mechanism of transfer of ARG from genera.
doi_str_mv 10.1016/j.chemosphere.2015.12.084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808065552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653515305385</els_id><sourcerecordid>1808065552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-e5bd5257b97950237dfa60d221c731bb5c5b7bf48c4342f16c9dbc5c49ade9fb3</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhq0KVLYLfwGlNy5JbScT20e0olAJqZdytvwxYb3aJFvbS9V_X28XKg6V4DTSzPPOSPMQ8pnRhlHWf9k0bo3jnHZrjNhwyqBhvKGy-0AWTApVM67kCVlQ2kHdQwtn5FNKG0pLGNRHcsZ7IYBJuSDxuor4FPBXNQ9VXmMVpmG7x8nh30ZEk0eccpVyNBkfA6Zqnioz5WDDnIMr6RRSLo3KGpcxBlOm_n9EWfmIE6ZzcjqYbcKL57okD19vfqzu6vvvt99W1_e1A6pyjWA9cBBWCQWUt8IPpqeec-ZEy6wFB1bYoZOuazs-sN4pbx24ThmParDtklwd9-7i_HOPKesxJIfbrZlw3ifNJJW0BwD-Niok8E60Et6BCi7bvoO-oOqIujinFHHQuxhGE39rRvVBpN7oVyL1QaRmXBeRJXv5fGZvR_T_ki_mCrA6AlheWARGnVw4ePMhosvaz-EdZ_4AflC3Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772836456</pqid></control><display><type>article</type><title>A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sharma, Virender K. ; Johnson, Natalie ; Cizmas, Leslie ; McDonald, Thomas J. ; Kim, Hyunook</creator><creatorcontrib>Sharma, Virender K. ; Johnson, Natalie ; Cizmas, Leslie ; McDonald, Thomas J. ; Kim, Hyunook</creatorcontrib><description>Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. •Prevalence of ARB and ARG in rivers, lakes, surface water, wastewater, and sludge.•Mechanism of resistance include horizontal gene transfer from donor bacteria.•Chlorine and advanced oxidation processes inactivate ARB and ARG significantly.•Flow pattern of the constructed wetlands governs removal of ARB and ARG.•Nanoparticles have a role in investigating mechanism of transfer of ARG from genera.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2015.12.084</identifier><identifier>PMID: 26775188</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Anti-Bacterial Agents - pharmacology ; Antibiotic resistance genes ; Antibiotic resistant bacteria ; Antibiotics ; Bacteria ; Bacteria - drug effects ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Bacteria - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Disinfection ; Drinking water ; Drug Resistance, Bacterial ; Drug Resistance, Microbial - genetics ; Ecology ; Fresh Water - microbiology ; Genes ; Humans ; Mechanism ; Nanoparticles ; Nanotechnology ; Tetracyclines ; Wetlands</subject><ispartof>Chemosphere (Oxford), 2016-05, Vol.150, p.702-714</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-e5bd5257b97950237dfa60d221c731bb5c5b7bf48c4342f16c9dbc5c49ade9fb3</citedby><cites>FETCH-LOGICAL-c509t-e5bd5257b97950237dfa60d221c731bb5c5b7bf48c4342f16c9dbc5c49ade9fb3</cites><orcidid>0000-0002-5980-8675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653515305385$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26775188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Virender K.</creatorcontrib><creatorcontrib>Johnson, Natalie</creatorcontrib><creatorcontrib>Cizmas, Leslie</creatorcontrib><creatorcontrib>McDonald, Thomas J.</creatorcontrib><creatorcontrib>Kim, Hyunook</creatorcontrib><title>A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. •Prevalence of ARB and ARG in rivers, lakes, surface water, wastewater, and sludge.•Mechanism of resistance include horizontal gene transfer from donor bacteria.•Chlorine and advanced oxidation processes inactivate ARB and ARG significantly.•Flow pattern of the constructed wetlands governs removal of ARB and ARG.•Nanoparticles have a role in investigating mechanism of transfer of ARG from genera.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic resistance genes</subject><subject>Antibiotic resistant bacteria</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Disinfection</subject><subject>Drinking water</subject><subject>Drug Resistance, Bacterial</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Ecology</subject><subject>Fresh Water - microbiology</subject><subject>Genes</subject><subject>Humans</subject><subject>Mechanism</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Tetracyclines</subject><subject>Wetlands</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1P3DAQhq0KVLYLfwGlNy5JbScT20e0olAJqZdytvwxYb3aJFvbS9V_X28XKg6V4DTSzPPOSPMQ8pnRhlHWf9k0bo3jnHZrjNhwyqBhvKGy-0AWTApVM67kCVlQ2kHdQwtn5FNKG0pLGNRHcsZ7IYBJuSDxuor4FPBXNQ9VXmMVpmG7x8nh30ZEk0eccpVyNBkfA6Zqnioz5WDDnIMr6RRSLo3KGpcxBlOm_n9EWfmIE6ZzcjqYbcKL57okD19vfqzu6vvvt99W1_e1A6pyjWA9cBBWCQWUt8IPpqeec-ZEy6wFB1bYoZOuazs-sN4pbx24ThmParDtklwd9-7i_HOPKesxJIfbrZlw3ifNJJW0BwD-Niok8E60Et6BCi7bvoO-oOqIujinFHHQuxhGE39rRvVBpN7oVyL1QaRmXBeRJXv5fGZvR_T_ki_mCrA6AlheWARGnVw4ePMhosvaz-EdZ_4AflC3Bg</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Sharma, Virender K.</creator><creator>Johnson, Natalie</creator><creator>Cizmas, Leslie</creator><creator>McDonald, Thomas J.</creator><creator>Kim, Hyunook</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TV</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5980-8675</orcidid></search><sort><creationdate>201605</creationdate><title>A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes</title><author>Sharma, Virender K. ; Johnson, Natalie ; Cizmas, Leslie ; McDonald, Thomas J. ; Kim, Hyunook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-e5bd5257b97950237dfa60d221c731bb5c5b7bf48c4342f16c9dbc5c49ade9fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic resistance genes</topic><topic>Antibiotic resistant bacteria</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Disinfection</topic><topic>Drinking water</topic><topic>Drug Resistance, Bacterial</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Ecology</topic><topic>Fresh Water - microbiology</topic><topic>Genes</topic><topic>Humans</topic><topic>Mechanism</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Tetracyclines</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Virender K.</creatorcontrib><creatorcontrib>Johnson, Natalie</creatorcontrib><creatorcontrib>Cizmas, Leslie</creatorcontrib><creatorcontrib>McDonald, Thomas J.</creatorcontrib><creatorcontrib>Kim, Hyunook</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Virender K.</au><au>Johnson, Natalie</au><au>Cizmas, Leslie</au><au>McDonald, Thomas J.</au><au>Kim, Hyunook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2016-05</date><risdate>2016</risdate><volume>150</volume><spage>702</spage><epage>714</epage><pages>702-714</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. •Prevalence of ARB and ARG in rivers, lakes, surface water, wastewater, and sludge.•Mechanism of resistance include horizontal gene transfer from donor bacteria.•Chlorine and advanced oxidation processes inactivate ARB and ARG significantly.•Flow pattern of the constructed wetlands governs removal of ARB and ARG.•Nanoparticles have a role in investigating mechanism of transfer of ARG from genera.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26775188</pmid><doi>10.1016/j.chemosphere.2015.12.084</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5980-8675</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2016-05, Vol.150, p.702-714
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_1808065552
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anti-Bacterial Agents - pharmacology
Antibiotic resistance genes
Antibiotic resistant bacteria
Antibiotics
Bacteria
Bacteria - drug effects
Bacteria - genetics
Bacteria - isolation & purification
Bacteria - metabolism
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Disinfection
Drinking water
Drug Resistance, Bacterial
Drug Resistance, Microbial - genetics
Ecology
Fresh Water - microbiology
Genes
Humans
Mechanism
Nanoparticles
Nanotechnology
Tetracyclines
Wetlands
title A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20the%20influence%20of%20treatment%20strategies%20on%20antibiotic%20resistant%20bacteria%20and%20antibiotic%20resistance%20genes&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Sharma,%20Virender%20K.&rft.date=2016-05&rft.volume=150&rft.spage=702&rft.epage=714&rft.pages=702-714&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2015.12.084&rft_dat=%3Cproquest_cross%3E1808065552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772836456&rft_id=info:pmid/26775188&rft_els_id=S0045653515305385&rfr_iscdi=true