A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2016-05, Vol.150, p.702-714 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 714 |
---|---|
container_issue | |
container_start_page | 702 |
container_title | Chemosphere (Oxford) |
container_volume | 150 |
creator | Sharma, Virender K. Johnson, Natalie Cizmas, Leslie McDonald, Thomas J. Kim, Hyunook |
description | Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized.
•Prevalence of ARB and ARG in rivers, lakes, surface water, wastewater, and sludge.•Mechanism of resistance include horizontal gene transfer from donor bacteria.•Chlorine and advanced oxidation processes inactivate ARB and ARG significantly.•Flow pattern of the constructed wetlands governs removal of ARB and ARG.•Nanoparticles have a role in investigating mechanism of transfer of ARG from genera. |
doi_str_mv | 10.1016/j.chemosphere.2015.12.084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808065552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653515305385</els_id><sourcerecordid>1808065552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-e5bd5257b97950237dfa60d221c731bb5c5b7bf48c4342f16c9dbc5c49ade9fb3</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhq0KVLYLfwGlNy5JbScT20e0olAJqZdytvwxYb3aJFvbS9V_X28XKg6V4DTSzPPOSPMQ8pnRhlHWf9k0bo3jnHZrjNhwyqBhvKGy-0AWTApVM67kCVlQ2kHdQwtn5FNKG0pLGNRHcsZ7IYBJuSDxuor4FPBXNQ9VXmMVpmG7x8nh30ZEk0eccpVyNBkfA6Zqnioz5WDDnIMr6RRSLo3KGpcxBlOm_n9EWfmIE6ZzcjqYbcKL57okD19vfqzu6vvvt99W1_e1A6pyjWA9cBBWCQWUt8IPpqeec-ZEy6wFB1bYoZOuazs-sN4pbx24ThmParDtklwd9-7i_HOPKesxJIfbrZlw3ifNJJW0BwD-Niok8E60Et6BCi7bvoO-oOqIujinFHHQuxhGE39rRvVBpN7oVyL1QaRmXBeRJXv5fGZvR_T_ki_mCrA6AlheWARGnVw4ePMhosvaz-EdZ_4AflC3Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772836456</pqid></control><display><type>article</type><title>A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sharma, Virender K. ; Johnson, Natalie ; Cizmas, Leslie ; McDonald, Thomas J. ; Kim, Hyunook</creator><creatorcontrib>Sharma, Virender K. ; Johnson, Natalie ; Cizmas, Leslie ; McDonald, Thomas J. ; Kim, Hyunook</creatorcontrib><description>Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized.
•Prevalence of ARB and ARG in rivers, lakes, surface water, wastewater, and sludge.•Mechanism of resistance include horizontal gene transfer from donor bacteria.•Chlorine and advanced oxidation processes inactivate ARB and ARG significantly.•Flow pattern of the constructed wetlands governs removal of ARB and ARG.•Nanoparticles have a role in investigating mechanism of transfer of ARG from genera.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2015.12.084</identifier><identifier>PMID: 26775188</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Anti-Bacterial Agents - pharmacology ; Antibiotic resistance genes ; Antibiotic resistant bacteria ; Antibiotics ; Bacteria ; Bacteria - drug effects ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacteria - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Disinfection ; Drinking water ; Drug Resistance, Bacterial ; Drug Resistance, Microbial - genetics ; Ecology ; Fresh Water - microbiology ; Genes ; Humans ; Mechanism ; Nanoparticles ; Nanotechnology ; Tetracyclines ; Wetlands</subject><ispartof>Chemosphere (Oxford), 2016-05, Vol.150, p.702-714</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-e5bd5257b97950237dfa60d221c731bb5c5b7bf48c4342f16c9dbc5c49ade9fb3</citedby><cites>FETCH-LOGICAL-c509t-e5bd5257b97950237dfa60d221c731bb5c5b7bf48c4342f16c9dbc5c49ade9fb3</cites><orcidid>0000-0002-5980-8675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653515305385$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26775188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Virender K.</creatorcontrib><creatorcontrib>Johnson, Natalie</creatorcontrib><creatorcontrib>Cizmas, Leslie</creatorcontrib><creatorcontrib>McDonald, Thomas J.</creatorcontrib><creatorcontrib>Kim, Hyunook</creatorcontrib><title>A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized.
•Prevalence of ARB and ARG in rivers, lakes, surface water, wastewater, and sludge.•Mechanism of resistance include horizontal gene transfer from donor bacteria.•Chlorine and advanced oxidation processes inactivate ARB and ARG significantly.•Flow pattern of the constructed wetlands governs removal of ARB and ARG.•Nanoparticles have a role in investigating mechanism of transfer of ARG from genera.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic resistance genes</subject><subject>Antibiotic resistant bacteria</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Disinfection</subject><subject>Drinking water</subject><subject>Drug Resistance, Bacterial</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Ecology</subject><subject>Fresh Water - microbiology</subject><subject>Genes</subject><subject>Humans</subject><subject>Mechanism</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Tetracyclines</subject><subject>Wetlands</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1P3DAQhq0KVLYLfwGlNy5JbScT20e0olAJqZdytvwxYb3aJFvbS9V_X28XKg6V4DTSzPPOSPMQ8pnRhlHWf9k0bo3jnHZrjNhwyqBhvKGy-0AWTApVM67kCVlQ2kHdQwtn5FNKG0pLGNRHcsZ7IYBJuSDxuor4FPBXNQ9VXmMVpmG7x8nh30ZEk0eccpVyNBkfA6Zqnioz5WDDnIMr6RRSLo3KGpcxBlOm_n9EWfmIE6ZzcjqYbcKL57okD19vfqzu6vvvt99W1_e1A6pyjWA9cBBWCQWUt8IPpqeec-ZEy6wFB1bYoZOuazs-sN4pbx24ThmParDtklwd9-7i_HOPKesxJIfbrZlw3ifNJJW0BwD-Niok8E60Et6BCi7bvoO-oOqIujinFHHQuxhGE39rRvVBpN7oVyL1QaRmXBeRJXv5fGZvR_T_ki_mCrA6AlheWARGnVw4ePMhosvaz-EdZ_4AflC3Bg</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Sharma, Virender K.</creator><creator>Johnson, Natalie</creator><creator>Cizmas, Leslie</creator><creator>McDonald, Thomas J.</creator><creator>Kim, Hyunook</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TV</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5980-8675</orcidid></search><sort><creationdate>201605</creationdate><title>A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes</title><author>Sharma, Virender K. ; Johnson, Natalie ; Cizmas, Leslie ; McDonald, Thomas J. ; Kim, Hyunook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-e5bd5257b97950237dfa60d221c731bb5c5b7bf48c4342f16c9dbc5c49ade9fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic resistance genes</topic><topic>Antibiotic resistant bacteria</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Disinfection</topic><topic>Drinking water</topic><topic>Drug Resistance, Bacterial</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Ecology</topic><topic>Fresh Water - microbiology</topic><topic>Genes</topic><topic>Humans</topic><topic>Mechanism</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Tetracyclines</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Virender K.</creatorcontrib><creatorcontrib>Johnson, Natalie</creatorcontrib><creatorcontrib>Cizmas, Leslie</creatorcontrib><creatorcontrib>McDonald, Thomas J.</creatorcontrib><creatorcontrib>Kim, Hyunook</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Virender K.</au><au>Johnson, Natalie</au><au>Cizmas, Leslie</au><au>McDonald, Thomas J.</au><au>Kim, Hyunook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2016-05</date><risdate>2016</risdate><volume>150</volume><spage>702</spage><epage>714</epage><pages>702-714</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized.
•Prevalence of ARB and ARG in rivers, lakes, surface water, wastewater, and sludge.•Mechanism of resistance include horizontal gene transfer from donor bacteria.•Chlorine and advanced oxidation processes inactivate ARB and ARG significantly.•Flow pattern of the constructed wetlands governs removal of ARB and ARG.•Nanoparticles have a role in investigating mechanism of transfer of ARG from genera.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26775188</pmid><doi>10.1016/j.chemosphere.2015.12.084</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5980-8675</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2016-05, Vol.150, p.702-714 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808065552 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Anti-Bacterial Agents - pharmacology Antibiotic resistance genes Antibiotic resistant bacteria Antibiotics Bacteria Bacteria - drug effects Bacteria - genetics Bacteria - isolation & purification Bacteria - metabolism Bacterial Proteins - genetics Bacterial Proteins - metabolism Disinfection Drinking water Drug Resistance, Bacterial Drug Resistance, Microbial - genetics Ecology Fresh Water - microbiology Genes Humans Mechanism Nanoparticles Nanotechnology Tetracyclines Wetlands |
title | A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20the%20influence%20of%20treatment%20strategies%20on%20antibiotic%20resistant%20bacteria%20and%20antibiotic%20resistance%20genes&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Sharma,%20Virender%20K.&rft.date=2016-05&rft.volume=150&rft.spage=702&rft.epage=714&rft.pages=702-714&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2015.12.084&rft_dat=%3Cproquest_cross%3E1808065552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772836456&rft_id=info:pmid/26775188&rft_els_id=S0045653515305385&rfr_iscdi=true |