Sparse support vector machine for pattern recognition

Summary Support vector machine (SVM) is one of the most popular classification techniques in pattern recognition community. However, because of outliers in the training samples, SVM tends to perform poorly under such circumstances. In this paper, we borrow the idea from compressive sensing by introd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2016-05, Vol.28 (7), p.2261-2273
Hauptverfasser: Chen, Guangyi, Bui, Tien. D., Krzyżak, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2273
container_issue 7
container_start_page 2261
container_title Concurrency and computation
container_volume 28
creator Chen, Guangyi
Bui, Tien. D.
Krzyżak, Adam
description Summary Support vector machine (SVM) is one of the most popular classification techniques in pattern recognition community. However, because of outliers in the training samples, SVM tends to perform poorly under such circumstances. In this paper, we borrow the idea from compressive sensing by introducing an extra term to the objective function of the standard SVM in order to achieve a sparse representation. Furthermore, instead of using the l0 norm, we adopt the l1 norm in our sparse SVM. In most cases, our method achieves higher classification rates than the standard SVM because of sparser support vectors and is more robust to outliers in the datasets. Experimental results show that our proposed SVM is efficient in pattern recognition applications. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cpe.3492
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808065095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808065095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3702-cb7c11cef0f82a2d10561d2d621d112ed86e11244f13b072291702eb8daffa013</originalsourceid><addsrcrecordid>eNp10D9PwzAQBXALgUQpSHyEjCwpd3acpCOqSkFUgMRfsViuc4ZAmgTbBfrtSVVUxMD03vC7Gx5jhwgDBODHpqWBSIZ8i_VQCh5DKpLtTefpLtvz_hUAEQT2mLxptfMU-UXbNi5EH2RC46K5Ni9lTZHteqtDIFdHjkzzXJehbOp9tmN15engJ_vs7nR8OzqLp1eT89HJNDYiAx6bWWYQDVmwOde8QJApFrxIORaInIo8pS6TxKKYQcb5ELszmuWFtlYDij47Wv9tXfO-IB_UvPSGqkrX1Cy8whxySCUM5S81rvHekVWtK-faLRWCWi2jumXUapmOxmv6WVa0_Nep0fX4ry99oK-N1-5NpZnIpHq4nCjxlMuLx-xe3YpvXLhyxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808065095</pqid></control><display><type>article</type><title>Sparse support vector machine for pattern recognition</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Guangyi ; Bui, Tien. D. ; Krzyżak, Adam</creator><creatorcontrib>Chen, Guangyi ; Bui, Tien. D. ; Krzyżak, Adam</creatorcontrib><description>Summary Support vector machine (SVM) is one of the most popular classification techniques in pattern recognition community. However, because of outliers in the training samples, SVM tends to perform poorly under such circumstances. In this paper, we borrow the idea from compressive sensing by introducing an extra term to the objective function of the standard SVM in order to achieve a sparse representation. Furthermore, instead of using the l0 norm, we adopt the l1 norm in our sparse SVM. In most cases, our method achieves higher classification rates than the standard SVM because of sparser support vectors and is more robust to outliers in the datasets. Experimental results show that our proposed SVM is efficient in pattern recognition applications. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.3492</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Classification ; Communities ; image processing ; machine learning ; Mathematical analysis ; Norms ; Outliers (statistics) ; Pattern recognition ; sparse support vector machines ; Support vector machines</subject><ispartof>Concurrency and computation, 2016-05, Vol.28 (7), p.2261-2273</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3702-cb7c11cef0f82a2d10561d2d621d112ed86e11244f13b072291702eb8daffa013</citedby><cites>FETCH-LOGICAL-c3702-cb7c11cef0f82a2d10561d2d621d112ed86e11244f13b072291702eb8daffa013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.3492$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.3492$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Chen, Guangyi</creatorcontrib><creatorcontrib>Bui, Tien. D.</creatorcontrib><creatorcontrib>Krzyżak, Adam</creatorcontrib><title>Sparse support vector machine for pattern recognition</title><title>Concurrency and computation</title><addtitle>Concurrency Computat.: Pract. Exper</addtitle><description>Summary Support vector machine (SVM) is one of the most popular classification techniques in pattern recognition community. However, because of outliers in the training samples, SVM tends to perform poorly under such circumstances. In this paper, we borrow the idea from compressive sensing by introducing an extra term to the objective function of the standard SVM in order to achieve a sparse representation. Furthermore, instead of using the l0 norm, we adopt the l1 norm in our sparse SVM. In most cases, our method achieves higher classification rates than the standard SVM because of sparser support vectors and is more robust to outliers in the datasets. Experimental results show that our proposed SVM is efficient in pattern recognition applications. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Classification</subject><subject>Communities</subject><subject>image processing</subject><subject>machine learning</subject><subject>Mathematical analysis</subject><subject>Norms</subject><subject>Outliers (statistics)</subject><subject>Pattern recognition</subject><subject>sparse support vector machines</subject><subject>Support vector machines</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10D9PwzAQBXALgUQpSHyEjCwpd3acpCOqSkFUgMRfsViuc4ZAmgTbBfrtSVVUxMD03vC7Gx5jhwgDBODHpqWBSIZ8i_VQCh5DKpLtTefpLtvz_hUAEQT2mLxptfMU-UXbNi5EH2RC46K5Ni9lTZHteqtDIFdHjkzzXJehbOp9tmN15engJ_vs7nR8OzqLp1eT89HJNDYiAx6bWWYQDVmwOde8QJApFrxIORaInIo8pS6TxKKYQcb5ELszmuWFtlYDij47Wv9tXfO-IB_UvPSGqkrX1Cy8whxySCUM5S81rvHekVWtK-faLRWCWi2jumXUapmOxmv6WVa0_Nep0fX4ry99oK-N1-5NpZnIpHq4nCjxlMuLx-xe3YpvXLhyxQ</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Chen, Guangyi</creator><creator>Bui, Tien. D.</creator><creator>Krzyżak, Adam</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201605</creationdate><title>Sparse support vector machine for pattern recognition</title><author>Chen, Guangyi ; Bui, Tien. D. ; Krzyżak, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3702-cb7c11cef0f82a2d10561d2d621d112ed86e11244f13b072291702eb8daffa013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classification</topic><topic>Communities</topic><topic>image processing</topic><topic>machine learning</topic><topic>Mathematical analysis</topic><topic>Norms</topic><topic>Outliers (statistics)</topic><topic>Pattern recognition</topic><topic>sparse support vector machines</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guangyi</creatorcontrib><creatorcontrib>Bui, Tien. D.</creatorcontrib><creatorcontrib>Krzyżak, Adam</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guangyi</au><au>Bui, Tien. D.</au><au>Krzyżak, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse support vector machine for pattern recognition</atitle><jtitle>Concurrency and computation</jtitle><addtitle>Concurrency Computat.: Pract. Exper</addtitle><date>2016-05</date><risdate>2016</risdate><volume>28</volume><issue>7</issue><spage>2261</spage><epage>2273</epage><pages>2261-2273</pages><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary Support vector machine (SVM) is one of the most popular classification techniques in pattern recognition community. However, because of outliers in the training samples, SVM tends to perform poorly under such circumstances. In this paper, we borrow the idea from compressive sensing by introducing an extra term to the objective function of the standard SVM in order to achieve a sparse representation. Furthermore, instead of using the l0 norm, we adopt the l1 norm in our sparse SVM. In most cases, our method achieves higher classification rates than the standard SVM because of sparser support vectors and is more robust to outliers in the datasets. Experimental results show that our proposed SVM is efficient in pattern recognition applications. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cpe.3492</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2016-05, Vol.28 (7), p.2261-2273
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_miscellaneous_1808065095
source Wiley Online Library Journals Frontfile Complete
subjects Classification
Communities
image processing
machine learning
Mathematical analysis
Norms
Outliers (statistics)
Pattern recognition
sparse support vector machines
Support vector machines
title Sparse support vector machine for pattern recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20support%20vector%20machine%20for%20pattern%20recognition&rft.jtitle=Concurrency%20and%20computation&rft.au=Chen,%20Guangyi&rft.date=2016-05&rft.volume=28&rft.issue=7&rft.spage=2261&rft.epage=2273&rft.pages=2261-2273&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.3492&rft_dat=%3Cproquest_cross%3E1808065095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808065095&rft_id=info:pmid/&rfr_iscdi=true