Project selection and adjustment based on uncertain measure

This paper discusses a project selection and adjustment problem in the situation where some project parameters are given by experts’ estimates because of lack of historical data. Uncertain variables are used to describe these project parameters and the use of them is justified. Based on uncertain me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2016-07, Vol.352-353, p.1-14
Hauptverfasser: Huang, Xiaoxia, Zhao, Tianyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title Information sciences
container_volume 352-353
creator Huang, Xiaoxia
Zhao, Tianyi
description This paper discusses a project selection and adjustment problem in the situation where some project parameters are given by experts’ estimates because of lack of historical data. Uncertain variables are used to describe these project parameters and the use of them is justified. Based on uncertain measure, a cost overrun risk which describes the average amount of investment outlay exceeding the available budget is proposed, and a new optimization model which simultaneously considers the selection of new projects and the adjustment of existing ones is developed. To solve the proposed problem, the deterministic equivalents of the model are provided and a genetic algorithm is offered. As an illustration, an example is also presented and discussed.
doi_str_mv 10.1016/j.ins.2016.02.050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808064601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025516301323</els_id><sourcerecordid>1808064601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-b86605703b52dd44c7420249b2ad35e15aae4003c8ffc6458cfad32658612a853</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG89emmdpEmaZU-y-A8W9KDnkCZTSGnTNWkFv71Z1rOnN8y8N_B-hNxSqChQed9XPqSK5bECVoGAM7KiqmGlZBt6TlYADEpgQlySq5R6AOCNlCuyfY9Tj3YuEg5Z_BQKE1xhXL-kecQwF61J6Iq8X4LFOBsfihFNWiJek4vODAlv_nRNPp8eP3Yv5f7t-XX3sC9tXcNctkpKEA3UrWDOcW4bzoDxTcuMqwVSYQxygNqqrrOSC2W7fGBSKEmZUaJek7vT30OcvhZMsx59sjgMJuC0JE0VKJBcAs1WerLaOKUUsdOH6EcTfzQFfQSle51B6SMoDUxnUDmzPWUwd_j2GHWyHnNZ52NGot3k_0n_Al_Fb7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808064601</pqid></control><display><type>article</type><title>Project selection and adjustment based on uncertain measure</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Huang, Xiaoxia ; Zhao, Tianyi</creator><creatorcontrib>Huang, Xiaoxia ; Zhao, Tianyi</creatorcontrib><description>This paper discusses a project selection and adjustment problem in the situation where some project parameters are given by experts’ estimates because of lack of historical data. Uncertain variables are used to describe these project parameters and the use of them is justified. Based on uncertain measure, a cost overrun risk which describes the average amount of investment outlay exceeding the available budget is proposed, and a new optimization model which simultaneously considers the selection of new projects and the adjustment of existing ones is developed. To solve the proposed problem, the deterministic equivalents of the model are provided and a genetic algorithm is offered. As an illustration, an example is also presented and discussed.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2016.02.050</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adjustment ; Budgeting ; Capital budgeting ; Equivalence ; Estimates ; Historic ; Investment ; Mathematical models ; Optimization ; Project adjustment ; Project selection ; Uncertain programming</subject><ispartof>Information sciences, 2016-07, Vol.352-353, p.1-14</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-b86605703b52dd44c7420249b2ad35e15aae4003c8ffc6458cfad32658612a853</citedby><cites>FETCH-LOGICAL-c330t-b86605703b52dd44c7420249b2ad35e15aae4003c8ffc6458cfad32658612a853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025516301323$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Huang, Xiaoxia</creatorcontrib><creatorcontrib>Zhao, Tianyi</creatorcontrib><title>Project selection and adjustment based on uncertain measure</title><title>Information sciences</title><description>This paper discusses a project selection and adjustment problem in the situation where some project parameters are given by experts’ estimates because of lack of historical data. Uncertain variables are used to describe these project parameters and the use of them is justified. Based on uncertain measure, a cost overrun risk which describes the average amount of investment outlay exceeding the available budget is proposed, and a new optimization model which simultaneously considers the selection of new projects and the adjustment of existing ones is developed. To solve the proposed problem, the deterministic equivalents of the model are provided and a genetic algorithm is offered. As an illustration, an example is also presented and discussed.</description><subject>Adjustment</subject><subject>Budgeting</subject><subject>Capital budgeting</subject><subject>Equivalence</subject><subject>Estimates</subject><subject>Historic</subject><subject>Investment</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Project adjustment</subject><subject>Project selection</subject><subject>Uncertain programming</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG89emmdpEmaZU-y-A8W9KDnkCZTSGnTNWkFv71Z1rOnN8y8N_B-hNxSqChQed9XPqSK5bECVoGAM7KiqmGlZBt6TlYADEpgQlySq5R6AOCNlCuyfY9Tj3YuEg5Z_BQKE1xhXL-kecQwF61J6Iq8X4LFOBsfihFNWiJek4vODAlv_nRNPp8eP3Yv5f7t-XX3sC9tXcNctkpKEA3UrWDOcW4bzoDxTcuMqwVSYQxygNqqrrOSC2W7fGBSKEmZUaJek7vT30OcvhZMsx59sjgMJuC0JE0VKJBcAs1WerLaOKUUsdOH6EcTfzQFfQSle51B6SMoDUxnUDmzPWUwd_j2GHWyHnNZ52NGot3k_0n_Al_Fb7s</recordid><startdate>20160720</startdate><enddate>20160720</enddate><creator>Huang, Xiaoxia</creator><creator>Zhao, Tianyi</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160720</creationdate><title>Project selection and adjustment based on uncertain measure</title><author>Huang, Xiaoxia ; Zhao, Tianyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-b86605703b52dd44c7420249b2ad35e15aae4003c8ffc6458cfad32658612a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adjustment</topic><topic>Budgeting</topic><topic>Capital budgeting</topic><topic>Equivalence</topic><topic>Estimates</topic><topic>Historic</topic><topic>Investment</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Project adjustment</topic><topic>Project selection</topic><topic>Uncertain programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiaoxia</creatorcontrib><creatorcontrib>Zhao, Tianyi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xiaoxia</au><au>Zhao, Tianyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Project selection and adjustment based on uncertain measure</atitle><jtitle>Information sciences</jtitle><date>2016-07-20</date><risdate>2016</risdate><volume>352-353</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper discusses a project selection and adjustment problem in the situation where some project parameters are given by experts’ estimates because of lack of historical data. Uncertain variables are used to describe these project parameters and the use of them is justified. Based on uncertain measure, a cost overrun risk which describes the average amount of investment outlay exceeding the available budget is proposed, and a new optimization model which simultaneously considers the selection of new projects and the adjustment of existing ones is developed. To solve the proposed problem, the deterministic equivalents of the model are provided and a genetic algorithm is offered. As an illustration, an example is also presented and discussed.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2016.02.050</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2016-07, Vol.352-353, p.1-14
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_1808064601
source Elsevier ScienceDirect Journals Complete
subjects Adjustment
Budgeting
Capital budgeting
Equivalence
Estimates
Historic
Investment
Mathematical models
Optimization
Project adjustment
Project selection
Uncertain programming
title Project selection and adjustment based on uncertain measure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Project%20selection%20and%20adjustment%20based%20on%20uncertain%20measure&rft.jtitle=Information%20sciences&rft.au=Huang,%20Xiaoxia&rft.date=2016-07-20&rft.volume=352-353&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2016.02.050&rft_dat=%3Cproquest_cross%3E1808064601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808064601&rft_id=info:pmid/&rft_els_id=S0020025516301323&rfr_iscdi=true