Project selection and adjustment based on uncertain measure
This paper discusses a project selection and adjustment problem in the situation where some project parameters are given by experts’ estimates because of lack of historical data. Uncertain variables are used to describe these project parameters and the use of them is justified. Based on uncertain me...
Gespeichert in:
Veröffentlicht in: | Information sciences 2016-07, Vol.352-353, p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Information sciences |
container_volume | 352-353 |
creator | Huang, Xiaoxia Zhao, Tianyi |
description | This paper discusses a project selection and adjustment problem in the situation where some project parameters are given by experts’ estimates because of lack of historical data. Uncertain variables are used to describe these project parameters and the use of them is justified. Based on uncertain measure, a cost overrun risk which describes the average amount of investment outlay exceeding the available budget is proposed, and a new optimization model which simultaneously considers the selection of new projects and the adjustment of existing ones is developed. To solve the proposed problem, the deterministic equivalents of the model are provided and a genetic algorithm is offered. As an illustration, an example is also presented and discussed. |
doi_str_mv | 10.1016/j.ins.2016.02.050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808064601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025516301323</els_id><sourcerecordid>1808064601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-b86605703b52dd44c7420249b2ad35e15aae4003c8ffc6458cfad32658612a853</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG89emmdpEmaZU-y-A8W9KDnkCZTSGnTNWkFv71Z1rOnN8y8N_B-hNxSqChQed9XPqSK5bECVoGAM7KiqmGlZBt6TlYADEpgQlySq5R6AOCNlCuyfY9Tj3YuEg5Z_BQKE1xhXL-kecQwF61J6Iq8X4LFOBsfihFNWiJek4vODAlv_nRNPp8eP3Yv5f7t-XX3sC9tXcNctkpKEA3UrWDOcW4bzoDxTcuMqwVSYQxygNqqrrOSC2W7fGBSKEmZUaJek7vT30OcvhZMsx59sjgMJuC0JE0VKJBcAs1WerLaOKUUsdOH6EcTfzQFfQSle51B6SMoDUxnUDmzPWUwd_j2GHWyHnNZ52NGot3k_0n_Al_Fb7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808064601</pqid></control><display><type>article</type><title>Project selection and adjustment based on uncertain measure</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Huang, Xiaoxia ; Zhao, Tianyi</creator><creatorcontrib>Huang, Xiaoxia ; Zhao, Tianyi</creatorcontrib><description>This paper discusses a project selection and adjustment problem in the situation where some project parameters are given by experts’ estimates because of lack of historical data. Uncertain variables are used to describe these project parameters and the use of them is justified. Based on uncertain measure, a cost overrun risk which describes the average amount of investment outlay exceeding the available budget is proposed, and a new optimization model which simultaneously considers the selection of new projects and the adjustment of existing ones is developed. To solve the proposed problem, the deterministic equivalents of the model are provided and a genetic algorithm is offered. As an illustration, an example is also presented and discussed.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2016.02.050</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adjustment ; Budgeting ; Capital budgeting ; Equivalence ; Estimates ; Historic ; Investment ; Mathematical models ; Optimization ; Project adjustment ; Project selection ; Uncertain programming</subject><ispartof>Information sciences, 2016-07, Vol.352-353, p.1-14</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-b86605703b52dd44c7420249b2ad35e15aae4003c8ffc6458cfad32658612a853</citedby><cites>FETCH-LOGICAL-c330t-b86605703b52dd44c7420249b2ad35e15aae4003c8ffc6458cfad32658612a853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025516301323$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Huang, Xiaoxia</creatorcontrib><creatorcontrib>Zhao, Tianyi</creatorcontrib><title>Project selection and adjustment based on uncertain measure</title><title>Information sciences</title><description>This paper discusses a project selection and adjustment problem in the situation where some project parameters are given by experts’ estimates because of lack of historical data. Uncertain variables are used to describe these project parameters and the use of them is justified. Based on uncertain measure, a cost overrun risk which describes the average amount of investment outlay exceeding the available budget is proposed, and a new optimization model which simultaneously considers the selection of new projects and the adjustment of existing ones is developed. To solve the proposed problem, the deterministic equivalents of the model are provided and a genetic algorithm is offered. As an illustration, an example is also presented and discussed.</description><subject>Adjustment</subject><subject>Budgeting</subject><subject>Capital budgeting</subject><subject>Equivalence</subject><subject>Estimates</subject><subject>Historic</subject><subject>Investment</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Project adjustment</subject><subject>Project selection</subject><subject>Uncertain programming</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG89emmdpEmaZU-y-A8W9KDnkCZTSGnTNWkFv71Z1rOnN8y8N_B-hNxSqChQed9XPqSK5bECVoGAM7KiqmGlZBt6TlYADEpgQlySq5R6AOCNlCuyfY9Tj3YuEg5Z_BQKE1xhXL-kecQwF61J6Iq8X4LFOBsfihFNWiJek4vODAlv_nRNPp8eP3Yv5f7t-XX3sC9tXcNctkpKEA3UrWDOcW4bzoDxTcuMqwVSYQxygNqqrrOSC2W7fGBSKEmZUaJek7vT30OcvhZMsx59sjgMJuC0JE0VKJBcAs1WerLaOKUUsdOH6EcTfzQFfQSle51B6SMoDUxnUDmzPWUwd_j2GHWyHnNZ52NGot3k_0n_Al_Fb7s</recordid><startdate>20160720</startdate><enddate>20160720</enddate><creator>Huang, Xiaoxia</creator><creator>Zhao, Tianyi</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160720</creationdate><title>Project selection and adjustment based on uncertain measure</title><author>Huang, Xiaoxia ; Zhao, Tianyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-b86605703b52dd44c7420249b2ad35e15aae4003c8ffc6458cfad32658612a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adjustment</topic><topic>Budgeting</topic><topic>Capital budgeting</topic><topic>Equivalence</topic><topic>Estimates</topic><topic>Historic</topic><topic>Investment</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Project adjustment</topic><topic>Project selection</topic><topic>Uncertain programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiaoxia</creatorcontrib><creatorcontrib>Zhao, Tianyi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xiaoxia</au><au>Zhao, Tianyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Project selection and adjustment based on uncertain measure</atitle><jtitle>Information sciences</jtitle><date>2016-07-20</date><risdate>2016</risdate><volume>352-353</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper discusses a project selection and adjustment problem in the situation where some project parameters are given by experts’ estimates because of lack of historical data. Uncertain variables are used to describe these project parameters and the use of them is justified. Based on uncertain measure, a cost overrun risk which describes the average amount of investment outlay exceeding the available budget is proposed, and a new optimization model which simultaneously considers the selection of new projects and the adjustment of existing ones is developed. To solve the proposed problem, the deterministic equivalents of the model are provided and a genetic algorithm is offered. As an illustration, an example is also presented and discussed.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2016.02.050</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2016-07, Vol.352-353, p.1-14 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808064601 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Adjustment Budgeting Capital budgeting Equivalence Estimates Historic Investment Mathematical models Optimization Project adjustment Project selection Uncertain programming |
title | Project selection and adjustment based on uncertain measure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Project%20selection%20and%20adjustment%20based%20on%20uncertain%20measure&rft.jtitle=Information%20sciences&rft.au=Huang,%20Xiaoxia&rft.date=2016-07-20&rft.volume=352-353&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2016.02.050&rft_dat=%3Cproquest_cross%3E1808064601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808064601&rft_id=info:pmid/&rft_els_id=S0020025516301323&rfr_iscdi=true |