Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller

This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2016-04, Vol.76, p.97-105
Hauptverfasser: Ding, Zhixia, Shen, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue
container_start_page 97
container_title Neural networks
container_volume 76
creator Ding, Zhixia
Shen, Yi
description This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results.
doi_str_mv 10.1016/j.neunet.2016.01.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808064299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608016000071</els_id><sourcerecordid>1808064299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-e2181c4d95c3af1bd53ca2fcf16734f0f9434bcfbc3aa7089635f5c9ee9a90fa3</originalsourceid><addsrcrecordid>eNqNkc1vFSEQwInRtK8f_4FpOHrZLV-7CxcT06ht0kQP7ZmwMChPHlTY16b-9eXl1R6rJzLMb5hhfgi9p6SnhI7n6z7BNsHSsxb1hPaEjG_QispJdWyS7C1aEal4NxJJDtFRrWvSCCn4ATpko5yEGuUKxe8lr8Eu4R5wfUz2Z8kp_DFLyAlnj1OLHKQlWBOxL8buEiZ2uTgouA1Q2n0b4iGXXxXPpoLDrbLG4EL6gTfZAbY5LSXHCOUEvfMmVjh9Po_R7ZfPNxeX3fW3r1cXn647OwiydMCopFY4NVhuPJ3dwK1h3no6Tlx44pXgYrZ-bmkztU-OfPCDVQDKKOINP0Yf9u_elfx7C3XRm1AtxGgS5G3VVLadjIIp9W90UkQJOTDxH-hEJ8YVpw0Ve9SWXGsBr-9K2JjyqCnRO3t6rff29M6eJlQ3N63s7LnDdt6Aeyn6q6sBH_cAtO3dByi62gDJggulSdQuh9c7PAEv06_1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771723931</pqid></control><display><type>article</type><title>Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Ding, Zhixia ; Shen, Yi</creator><creatorcontrib>Ding, Zhixia ; Shen, Yi</creatorcontrib><description>This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2016.01.006</identifier><identifier>PMID: 26874968</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Controllers ; Design engineering ; Fractional-order integral sliding surface ; Fractional-order neural networks ; Neural networks ; Neural Networks (Computer) ; Projective synchronization ; Sliding ; Sliding mode ; Sliding mode control ; Sliding mode controller ; Synchronism ; Synchronization</subject><ispartof>Neural networks, 2016-04, Vol.76, p.97-105</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-e2181c4d95c3af1bd53ca2fcf16734f0f9434bcfbc3aa7089635f5c9ee9a90fa3</citedby><cites>FETCH-LOGICAL-c540t-e2181c4d95c3af1bd53ca2fcf16734f0f9434bcfbc3aa7089635f5c9ee9a90fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2016.01.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26874968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Zhixia</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><title>Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results.</description><subject>Algorithms</subject><subject>Controllers</subject><subject>Design engineering</subject><subject>Fractional-order integral sliding surface</subject><subject>Fractional-order neural networks</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Projective synchronization</subject><subject>Sliding</subject><subject>Sliding mode</subject><subject>Sliding mode control</subject><subject>Sliding mode controller</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1vFSEQwInRtK8f_4FpOHrZLV-7CxcT06ht0kQP7ZmwMChPHlTY16b-9eXl1R6rJzLMb5hhfgi9p6SnhI7n6z7BNsHSsxb1hPaEjG_QispJdWyS7C1aEal4NxJJDtFRrWvSCCn4ATpko5yEGuUKxe8lr8Eu4R5wfUz2Z8kp_DFLyAlnj1OLHKQlWBOxL8buEiZ2uTgouA1Q2n0b4iGXXxXPpoLDrbLG4EL6gTfZAbY5LSXHCOUEvfMmVjh9Po_R7ZfPNxeX3fW3r1cXn647OwiydMCopFY4NVhuPJ3dwK1h3no6Tlx44pXgYrZ-bmkztU-OfPCDVQDKKOINP0Yf9u_elfx7C3XRm1AtxGgS5G3VVLadjIIp9W90UkQJOTDxH-hEJ8YVpw0Ve9SWXGsBr-9K2JjyqCnRO3t6rff29M6eJlQ3N63s7LnDdt6Aeyn6q6sBH_cAtO3dByi62gDJggulSdQuh9c7PAEv06_1</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Ding, Zhixia</creator><creator>Shen, Yi</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201604</creationdate><title>Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller</title><author>Ding, Zhixia ; Shen, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-e2181c4d95c3af1bd53ca2fcf16734f0f9434bcfbc3aa7089635f5c9ee9a90fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Controllers</topic><topic>Design engineering</topic><topic>Fractional-order integral sliding surface</topic><topic>Fractional-order neural networks</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Projective synchronization</topic><topic>Sliding</topic><topic>Sliding mode</topic><topic>Sliding mode control</topic><topic>Sliding mode controller</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Zhixia</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Zhixia</au><au>Shen, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2016-04</date><risdate>2016</risdate><volume>76</volume><spage>97</spage><epage>105</epage><pages>97-105</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>26874968</pmid><doi>10.1016/j.neunet.2016.01.006</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2016-04, Vol.76, p.97-105
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_1808064299
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Algorithms
Controllers
Design engineering
Fractional-order integral sliding surface
Fractional-order neural networks
Neural networks
Neural Networks (Computer)
Projective synchronization
Sliding
Sliding mode
Sliding mode control
Sliding mode controller
Synchronism
Synchronization
title Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20synchronization%20of%20nonidentical%20fractional-order%20neural%20networks%20based%20on%20sliding%20mode%20controller&rft.jtitle=Neural%20networks&rft.au=Ding,%20Zhixia&rft.date=2016-04&rft.volume=76&rft.spage=97&rft.epage=105&rft.pages=97-105&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2016.01.006&rft_dat=%3Cproquest_cross%3E1808064299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771723931&rft_id=info:pmid/26874968&rft_els_id=S0893608016000071&rfr_iscdi=true