Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller
This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode co...
Gespeichert in:
Veröffentlicht in: | Neural networks 2016-04, Vol.76, p.97-105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | |
container_start_page | 97 |
container_title | Neural networks |
container_volume | 76 |
creator | Ding, Zhixia Shen, Yi |
description | This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results. |
doi_str_mv | 10.1016/j.neunet.2016.01.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808064299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608016000071</els_id><sourcerecordid>1808064299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-e2181c4d95c3af1bd53ca2fcf16734f0f9434bcfbc3aa7089635f5c9ee9a90fa3</originalsourceid><addsrcrecordid>eNqNkc1vFSEQwInRtK8f_4FpOHrZLV-7CxcT06ht0kQP7ZmwMChPHlTY16b-9eXl1R6rJzLMb5hhfgi9p6SnhI7n6z7BNsHSsxb1hPaEjG_QispJdWyS7C1aEal4NxJJDtFRrWvSCCn4ATpko5yEGuUKxe8lr8Eu4R5wfUz2Z8kp_DFLyAlnj1OLHKQlWBOxL8buEiZ2uTgouA1Q2n0b4iGXXxXPpoLDrbLG4EL6gTfZAbY5LSXHCOUEvfMmVjh9Po_R7ZfPNxeX3fW3r1cXn647OwiydMCopFY4NVhuPJ3dwK1h3no6Tlx44pXgYrZ-bmkztU-OfPCDVQDKKOINP0Yf9u_elfx7C3XRm1AtxGgS5G3VVLadjIIp9W90UkQJOTDxH-hEJ8YVpw0Ve9SWXGsBr-9K2JjyqCnRO3t6rff29M6eJlQ3N63s7LnDdt6Aeyn6q6sBH_cAtO3dByi62gDJggulSdQuh9c7PAEv06_1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771723931</pqid></control><display><type>article</type><title>Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Ding, Zhixia ; Shen, Yi</creator><creatorcontrib>Ding, Zhixia ; Shen, Yi</creatorcontrib><description>This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2016.01.006</identifier><identifier>PMID: 26874968</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Controllers ; Design engineering ; Fractional-order integral sliding surface ; Fractional-order neural networks ; Neural networks ; Neural Networks (Computer) ; Projective synchronization ; Sliding ; Sliding mode ; Sliding mode control ; Sliding mode controller ; Synchronism ; Synchronization</subject><ispartof>Neural networks, 2016-04, Vol.76, p.97-105</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-e2181c4d95c3af1bd53ca2fcf16734f0f9434bcfbc3aa7089635f5c9ee9a90fa3</citedby><cites>FETCH-LOGICAL-c540t-e2181c4d95c3af1bd53ca2fcf16734f0f9434bcfbc3aa7089635f5c9ee9a90fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2016.01.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26874968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Zhixia</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><title>Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results.</description><subject>Algorithms</subject><subject>Controllers</subject><subject>Design engineering</subject><subject>Fractional-order integral sliding surface</subject><subject>Fractional-order neural networks</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Projective synchronization</subject><subject>Sliding</subject><subject>Sliding mode</subject><subject>Sliding mode control</subject><subject>Sliding mode controller</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1vFSEQwInRtK8f_4FpOHrZLV-7CxcT06ht0kQP7ZmwMChPHlTY16b-9eXl1R6rJzLMb5hhfgi9p6SnhI7n6z7BNsHSsxb1hPaEjG_QispJdWyS7C1aEal4NxJJDtFRrWvSCCn4ATpko5yEGuUKxe8lr8Eu4R5wfUz2Z8kp_DFLyAlnj1OLHKQlWBOxL8buEiZ2uTgouA1Q2n0b4iGXXxXPpoLDrbLG4EL6gTfZAbY5LSXHCOUEvfMmVjh9Po_R7ZfPNxeX3fW3r1cXn647OwiydMCopFY4NVhuPJ3dwK1h3no6Tlx44pXgYrZ-bmkztU-OfPCDVQDKKOINP0Yf9u_elfx7C3XRm1AtxGgS5G3VVLadjIIp9W90UkQJOTDxH-hEJ8YVpw0Ve9SWXGsBr-9K2JjyqCnRO3t6rff29M6eJlQ3N63s7LnDdt6Aeyn6q6sBH_cAtO3dByi62gDJggulSdQuh9c7PAEv06_1</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Ding, Zhixia</creator><creator>Shen, Yi</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201604</creationdate><title>Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller</title><author>Ding, Zhixia ; Shen, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-e2181c4d95c3af1bd53ca2fcf16734f0f9434bcfbc3aa7089635f5c9ee9a90fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Controllers</topic><topic>Design engineering</topic><topic>Fractional-order integral sliding surface</topic><topic>Fractional-order neural networks</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Projective synchronization</topic><topic>Sliding</topic><topic>Sliding mode</topic><topic>Sliding mode control</topic><topic>Sliding mode controller</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Zhixia</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Zhixia</au><au>Shen, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2016-04</date><risdate>2016</risdate><volume>76</volume><spage>97</spage><epage>105</epage><pages>97-105</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>26874968</pmid><doi>10.1016/j.neunet.2016.01.006</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2016-04, Vol.76, p.97-105 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808064299 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Algorithms Controllers Design engineering Fractional-order integral sliding surface Fractional-order neural networks Neural networks Neural Networks (Computer) Projective synchronization Sliding Sliding mode Sliding mode control Sliding mode controller Synchronism Synchronization |
title | Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20synchronization%20of%20nonidentical%20fractional-order%20neural%20networks%20based%20on%20sliding%20mode%20controller&rft.jtitle=Neural%20networks&rft.au=Ding,%20Zhixia&rft.date=2016-04&rft.volume=76&rft.spage=97&rft.epage=105&rft.pages=97-105&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2016.01.006&rft_dat=%3Cproquest_cross%3E1808064299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771723931&rft_id=info:pmid/26874968&rft_els_id=S0893608016000071&rfr_iscdi=true |