Ratcheting and energetic aspects of synchronization in coupled bursting neurons
In this paper, we investigate the dynamics of two coupled bursting neurons. The Hindmarsh–Rose mathematical model of the neuron subjected to an external periodic stimulus is considered. We transform this model into that of the one-dimensional problem of a particle driven by a periodic external force...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2016, Vol.83 (1-2), p.541-554 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 554 |
---|---|
container_issue | 1-2 |
container_start_page | 541 |
container_title | Nonlinear dynamics |
container_volume | 83 |
creator | Yamakou, E. Marius Inack, E. Maeva Moukam Kakmeni, F. M. |
description | In this paper, we investigate the dynamics of two coupled bursting neurons. The Hindmarsh–Rose mathematical model of the neuron subjected to an external periodic stimulus is considered. We transform this model into that of the one-dimensional problem of a particle driven by a periodic external force under the influence of a double-well potential. We study the bifurcation structures, chaotic behavior, and the synchronization dynamics of the transformed model. Numerical simulations reveal the existence of some bifurcation structures including saddle-node, symmetry-breaking, and period-doubling route to chaos. By varying the system’s parameters, we also find thresholds for which the system remains periodic. In Lyapunov exponent diagrams, regions of chaos, quasi-periodicity, and periodicity are clearly identified. In the synchronization dynamics, the Lyapunov function criteria is used to determine the stability of the synchronized states. In addition, the threshold parameters for which the synchronization occurs have been found. The synchronization energy of the coupled model is derived using the generalized Hamiltonian formalism. It is shown that maintaining the system in a synchronized regime requires a nonzero flow of energy per unit time. |
doi_str_mv | 10.1007/s11071-015-2346-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808064252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808064252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a19378a95a01583109be208094741e3312326c3640c6b3bcba2e7a5839c94cd63</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvozWMyk6UUX1AoiEJ3IZOm7ZRpMiYzC_31po4gCK4uF77vcDgIXVK4oQDlbaIUSkqAFoRxIQkcoQktSk6YVMtjNAHFBAEFy1N0ltIOADiDaoIWL6a3W9c3foONX2HnXdzk12KTOmf7hMMapw9vtzH45tP0TfC48diGoWvdCtdDTN-yd0Mm0jk6WZs2uYufO0VvD_evsycyXzw-z-7mxHKhemKo4mVlVGFy44pTULXLfUCJUlDHOWWcSculACtrXtvaMFeaTCqrhF1JPkXXY24Xw_vgUq_3TbKubY13YUiaVjlNClawjF79QXdhiD6304wVSkgGoDJFR8rGkFJ0a93FZm_ih6agDxPrcWKdC-vDxBqyw0YnZdZvXPxN_l_6Aji6fYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259462009</pqid></control><display><type>article</type><title>Ratcheting and energetic aspects of synchronization in coupled bursting neurons</title><source>Springer Nature - Complete Springer Journals</source><creator>Yamakou, E. Marius ; Inack, E. Maeva ; Moukam Kakmeni, F. M.</creator><creatorcontrib>Yamakou, E. Marius ; Inack, E. Maeva ; Moukam Kakmeni, F. M.</creatorcontrib><description>In this paper, we investigate the dynamics of two coupled bursting neurons. The Hindmarsh–Rose mathematical model of the neuron subjected to an external periodic stimulus is considered. We transform this model into that of the one-dimensional problem of a particle driven by a periodic external force under the influence of a double-well potential. We study the bifurcation structures, chaotic behavior, and the synchronization dynamics of the transformed model. Numerical simulations reveal the existence of some bifurcation structures including saddle-node, symmetry-breaking, and period-doubling route to chaos. By varying the system’s parameters, we also find thresholds for which the system remains periodic. In Lyapunov exponent diagrams, regions of chaos, quasi-periodicity, and periodicity are clearly identified. In the synchronization dynamics, the Lyapunov function criteria is used to determine the stability of the synchronized states. In addition, the threshold parameters for which the synchronization occurs have been found. The synchronization energy of the coupled model is derived using the generalized Hamiltonian formalism. It is shown that maintaining the system in a synchronized regime requires a nonzero flow of energy per unit time.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-2346-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bifurcations ; Bursting ; Chaos theory ; Classical Mechanics ; Computer simulation ; Control ; Dynamic stability ; Dynamic structural analysis ; Dynamical Systems ; Dynamics ; Engineering ; Joining ; Liapunov functions ; Mathematical models ; Mechanical Engineering ; Neurons ; Original Paper ; Parameters ; Periodic variations ; Ratcheting ; Serrated yielding ; Synchronism ; Synchronization ; Vibration</subject><ispartof>Nonlinear dynamics, 2016, Vol.83 (1-2), p.541-554</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a19378a95a01583109be208094741e3312326c3640c6b3bcba2e7a5839c94cd63</citedby><cites>FETCH-LOGICAL-c349t-a19378a95a01583109be208094741e3312326c3640c6b3bcba2e7a5839c94cd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-015-2346-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-015-2346-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Yamakou, E. Marius</creatorcontrib><creatorcontrib>Inack, E. Maeva</creatorcontrib><creatorcontrib>Moukam Kakmeni, F. M.</creatorcontrib><title>Ratcheting and energetic aspects of synchronization in coupled bursting neurons</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we investigate the dynamics of two coupled bursting neurons. The Hindmarsh–Rose mathematical model of the neuron subjected to an external periodic stimulus is considered. We transform this model into that of the one-dimensional problem of a particle driven by a periodic external force under the influence of a double-well potential. We study the bifurcation structures, chaotic behavior, and the synchronization dynamics of the transformed model. Numerical simulations reveal the existence of some bifurcation structures including saddle-node, symmetry-breaking, and period-doubling route to chaos. By varying the system’s parameters, we also find thresholds for which the system remains periodic. In Lyapunov exponent diagrams, regions of chaos, quasi-periodicity, and periodicity are clearly identified. In the synchronization dynamics, the Lyapunov function criteria is used to determine the stability of the synchronized states. In addition, the threshold parameters for which the synchronization occurs have been found. The synchronization energy of the coupled model is derived using the generalized Hamiltonian formalism. It is shown that maintaining the system in a synchronized regime requires a nonzero flow of energy per unit time.</description><subject>Automotive Engineering</subject><subject>Bifurcations</subject><subject>Bursting</subject><subject>Chaos theory</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Dynamic stability</subject><subject>Dynamic structural analysis</subject><subject>Dynamical Systems</subject><subject>Dynamics</subject><subject>Engineering</subject><subject>Joining</subject><subject>Liapunov functions</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Neurons</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Periodic variations</subject><subject>Ratcheting</subject><subject>Serrated yielding</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvozWMyk6UUX1AoiEJ3IZOm7ZRpMiYzC_31po4gCK4uF77vcDgIXVK4oQDlbaIUSkqAFoRxIQkcoQktSk6YVMtjNAHFBAEFy1N0ltIOADiDaoIWL6a3W9c3foONX2HnXdzk12KTOmf7hMMapw9vtzH45tP0TfC48diGoWvdCtdDTN-yd0Mm0jk6WZs2uYufO0VvD_evsycyXzw-z-7mxHKhemKo4mVlVGFy44pTULXLfUCJUlDHOWWcSculACtrXtvaMFeaTCqrhF1JPkXXY24Xw_vgUq_3TbKubY13YUiaVjlNClawjF79QXdhiD6304wVSkgGoDJFR8rGkFJ0a93FZm_ih6agDxPrcWKdC-vDxBqyw0YnZdZvXPxN_l_6Aji6fYM</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Yamakou, E. Marius</creator><creator>Inack, E. Maeva</creator><creator>Moukam Kakmeni, F. M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2016</creationdate><title>Ratcheting and energetic aspects of synchronization in coupled bursting neurons</title><author>Yamakou, E. Marius ; Inack, E. Maeva ; Moukam Kakmeni, F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a19378a95a01583109be208094741e3312326c3640c6b3bcba2e7a5839c94cd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automotive Engineering</topic><topic>Bifurcations</topic><topic>Bursting</topic><topic>Chaos theory</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Dynamic stability</topic><topic>Dynamic structural analysis</topic><topic>Dynamical Systems</topic><topic>Dynamics</topic><topic>Engineering</topic><topic>Joining</topic><topic>Liapunov functions</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Neurons</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Periodic variations</topic><topic>Ratcheting</topic><topic>Serrated yielding</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamakou, E. Marius</creatorcontrib><creatorcontrib>Inack, E. Maeva</creatorcontrib><creatorcontrib>Moukam Kakmeni, F. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamakou, E. Marius</au><au>Inack, E. Maeva</au><au>Moukam Kakmeni, F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ratcheting and energetic aspects of synchronization in coupled bursting neurons</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2016</date><risdate>2016</risdate><volume>83</volume><issue>1-2</issue><spage>541</spage><epage>554</epage><pages>541-554</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we investigate the dynamics of two coupled bursting neurons. The Hindmarsh–Rose mathematical model of the neuron subjected to an external periodic stimulus is considered. We transform this model into that of the one-dimensional problem of a particle driven by a periodic external force under the influence of a double-well potential. We study the bifurcation structures, chaotic behavior, and the synchronization dynamics of the transformed model. Numerical simulations reveal the existence of some bifurcation structures including saddle-node, symmetry-breaking, and period-doubling route to chaos. By varying the system’s parameters, we also find thresholds for which the system remains periodic. In Lyapunov exponent diagrams, regions of chaos, quasi-periodicity, and periodicity are clearly identified. In the synchronization dynamics, the Lyapunov function criteria is used to determine the stability of the synchronized states. In addition, the threshold parameters for which the synchronization occurs have been found. The synchronization energy of the coupled model is derived using the generalized Hamiltonian formalism. It is shown that maintaining the system in a synchronized regime requires a nonzero flow of energy per unit time.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-2346-0</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2016, Vol.83 (1-2), p.541-554 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_miscellaneous_1808064252 |
source | Springer Nature - Complete Springer Journals |
subjects | Automotive Engineering Bifurcations Bursting Chaos theory Classical Mechanics Computer simulation Control Dynamic stability Dynamic structural analysis Dynamical Systems Dynamics Engineering Joining Liapunov functions Mathematical models Mechanical Engineering Neurons Original Paper Parameters Periodic variations Ratcheting Serrated yielding Synchronism Synchronization Vibration |
title | Ratcheting and energetic aspects of synchronization in coupled bursting neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ratcheting%20and%20energetic%20aspects%20of%20synchronization%20in%20coupled%20bursting%20neurons&rft.jtitle=Nonlinear%20dynamics&rft.au=Yamakou,%20E.%20Marius&rft.date=2016&rft.volume=83&rft.issue=1-2&rft.spage=541&rft.epage=554&rft.pages=541-554&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-2346-0&rft_dat=%3Cproquest_cross%3E1808064252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259462009&rft_id=info:pmid/&rfr_iscdi=true |