Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications
Recent examples have highlighted how stem cells have the capability to initiate morphogenesis in vitro; that is, to generate complex structures in culture that closely parallel their in vivo counterparts. Lgr5, the receptor for the Wnt-agonistic R-spondins, marks stem cells in multiple adult organs...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2013-06, Vol.340 (6137), p.1190-1194 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1194 |
---|---|
container_issue | 6137 |
container_start_page | 1190 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 340 |
creator | Sato, Toshiro Clevers, Hans |
description | Recent examples have highlighted how stem cells have the capability to initiate morphogenesis in vitro; that is, to generate complex structures in culture that closely parallel their in vivo counterparts. Lgr5, the receptor for the Wnt-agonistic R-spondins, marks stem cells in multiple adult organs of mice and humans. In R-spondin-based three-dimensional cultures, these Lgr5 stem cells can grow into ever-expanding epithelial organoids that retain their original organ identity. Single Lgr5 stem cells derived from the intestine can be cultured to build epithelial structures that retain hallmarks of the in vivo epithelium. Here, we review the mechanisms that support this notable example of self-organization and discuss applications of this technology for stem cell research, disease modeling (e.g., for colorectal cancer and cystic fibrosis), and regenerative medicine. |
doi_str_mv | 10.1126/science.1234852 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808061734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41985454</jstor_id><sourcerecordid>41985454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-b824acb15e0c6d3e127aca1ccedce5b320a40c2dab16192215f1812dbc9b5ef03</originalsourceid><addsrcrecordid>eNqF0U1P3DAQBmCrKioL9NxTkSUuvQQ8_krcG1q1WyQQh6Xn1HEm1KvEWexEqP31GO3CgQsny55nRmO9hHwBdg7A9UVyHoPDc-BCVop_IAtgRhWGM_GRLBgTuqhYqQ7JUUobxnLNiE_kkItSSiPZgvxZxfHRh3u6xr4rbuO9Df7_8_3GB1-s5inRLo4DtXSdX3ukV2HCNPlge7qecKBL7Pvv9Abd39yZMgwtvdxue-_s5MeQTshBZ_uEn_fnMfn988fd8ldxfbu6Wl5eF05KPRVNxaV1DShkTrcCgZfWWXAOW4eqEZxZyRxvbQMaDOegOqiAt40zjcKOiWPybTd3G8eHOa9YDz65vJwNOM6phopVTEMp5PtUaGUMGCUyPXtDN-Mc8-d3SptSqzKri51ycUwpYldvox9s_FcDq59zqvc51fuccsfpfu7cDNi--pdgMvi6A5s0jfG1LsFUSiopngCySpiL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365697657</pqid></control><display><type>article</type><title>Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Sato, Toshiro ; Clevers, Hans</creator><creatorcontrib>Sato, Toshiro ; Clevers, Hans</creatorcontrib><description>Recent examples have highlighted how stem cells have the capability to initiate morphogenesis in vitro; that is, to generate complex structures in culture that closely parallel their in vivo counterparts. Lgr5, the receptor for the Wnt-agonistic R-spondins, marks stem cells in multiple adult organs of mice and humans. In R-spondin-based three-dimensional cultures, these Lgr5 stem cells can grow into ever-expanding epithelial organoids that retain their original organ identity. Single Lgr5 stem cells derived from the intestine can be cultured to build epithelial structures that retain hallmarks of the in vivo epithelium. Here, we review the mechanisms that support this notable example of self-organization and discuss applications of this technology for stem cell research, disease modeling (e.g., for colorectal cancer and cystic fibrosis), and regenerative medicine.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1234852</identifier><identifier>PMID: 23744940</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adult Stem Cells - physiology ; Animals ; Cell Count ; Cell culture ; Cell Culture Techniques ; Cell lines ; Cellular differentiation ; Construction ; Crypts ; Culture ; Cystic fibrosis ; Daughter cells ; Disease Models, Animal ; Enteroendocrine cells ; Ephrin-B1 - metabolism ; Epithelial cells ; Epithelium ; Humans ; Intestinal Mucosa - physiology ; Intestine, Small - growth & development ; Intestines ; Mesenchymal stem cells ; Mice ; Morphogenesis ; Organoids ; Organs ; Receptors, G-Protein-Coupled - genetics ; Regenerative Medicine ; REVIEWS ; Stem Cell Niche ; Stem cells ; Three dimensional ; Wnt Proteins - metabolism</subject><ispartof>Science (American Association for the Advancement of Science), 2013-06, Vol.340 (6137), p.1190-1194</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-b824acb15e0c6d3e127aca1ccedce5b320a40c2dab16192215f1812dbc9b5ef03</citedby><cites>FETCH-LOGICAL-c446t-b824acb15e0c6d3e127aca1ccedce5b320a40c2dab16192215f1812dbc9b5ef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41985454$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41985454$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23744940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sato, Toshiro</creatorcontrib><creatorcontrib>Clevers, Hans</creatorcontrib><title>Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Recent examples have highlighted how stem cells have the capability to initiate morphogenesis in vitro; that is, to generate complex structures in culture that closely parallel their in vivo counterparts. Lgr5, the receptor for the Wnt-agonistic R-spondins, marks stem cells in multiple adult organs of mice and humans. In R-spondin-based three-dimensional cultures, these Lgr5 stem cells can grow into ever-expanding epithelial organoids that retain their original organ identity. Single Lgr5 stem cells derived from the intestine can be cultured to build epithelial structures that retain hallmarks of the in vivo epithelium. Here, we review the mechanisms that support this notable example of self-organization and discuss applications of this technology for stem cell research, disease modeling (e.g., for colorectal cancer and cystic fibrosis), and regenerative medicine.</description><subject>Adult Stem Cells - physiology</subject><subject>Animals</subject><subject>Cell Count</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Cell lines</subject><subject>Cellular differentiation</subject><subject>Construction</subject><subject>Crypts</subject><subject>Culture</subject><subject>Cystic fibrosis</subject><subject>Daughter cells</subject><subject>Disease Models, Animal</subject><subject>Enteroendocrine cells</subject><subject>Ephrin-B1 - metabolism</subject><subject>Epithelial cells</subject><subject>Epithelium</subject><subject>Humans</subject><subject>Intestinal Mucosa - physiology</subject><subject>Intestine, Small - growth & development</subject><subject>Intestines</subject><subject>Mesenchymal stem cells</subject><subject>Mice</subject><subject>Morphogenesis</subject><subject>Organoids</subject><subject>Organs</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Regenerative Medicine</subject><subject>REVIEWS</subject><subject>Stem Cell Niche</subject><subject>Stem cells</subject><subject>Three dimensional</subject><subject>Wnt Proteins - metabolism</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1P3DAQBmCrKioL9NxTkSUuvQQ8_krcG1q1WyQQh6Xn1HEm1KvEWexEqP31GO3CgQsny55nRmO9hHwBdg7A9UVyHoPDc-BCVop_IAtgRhWGM_GRLBgTuqhYqQ7JUUobxnLNiE_kkItSSiPZgvxZxfHRh3u6xr4rbuO9Df7_8_3GB1-s5inRLo4DtXSdX3ukV2HCNPlge7qecKBL7Pvv9Abd39yZMgwtvdxue-_s5MeQTshBZ_uEn_fnMfn988fd8ldxfbu6Wl5eF05KPRVNxaV1DShkTrcCgZfWWXAOW4eqEZxZyRxvbQMaDOegOqiAt40zjcKOiWPybTd3G8eHOa9YDz65vJwNOM6phopVTEMp5PtUaGUMGCUyPXtDN-Mc8-d3SptSqzKri51ycUwpYldvox9s_FcDq59zqvc51fuccsfpfu7cDNi--pdgMvi6A5s0jfG1LsFUSiopngCySpiL</recordid><startdate>20130607</startdate><enddate>20130607</enddate><creator>Sato, Toshiro</creator><creator>Clevers, Hans</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130607</creationdate><title>Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications</title><author>Sato, Toshiro ; Clevers, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-b824acb15e0c6d3e127aca1ccedce5b320a40c2dab16192215f1812dbc9b5ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult Stem Cells - physiology</topic><topic>Animals</topic><topic>Cell Count</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Cell lines</topic><topic>Cellular differentiation</topic><topic>Construction</topic><topic>Crypts</topic><topic>Culture</topic><topic>Cystic fibrosis</topic><topic>Daughter cells</topic><topic>Disease Models, Animal</topic><topic>Enteroendocrine cells</topic><topic>Ephrin-B1 - metabolism</topic><topic>Epithelial cells</topic><topic>Epithelium</topic><topic>Humans</topic><topic>Intestinal Mucosa - physiology</topic><topic>Intestine, Small - growth & development</topic><topic>Intestines</topic><topic>Mesenchymal stem cells</topic><topic>Mice</topic><topic>Morphogenesis</topic><topic>Organoids</topic><topic>Organs</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Regenerative Medicine</topic><topic>REVIEWS</topic><topic>Stem Cell Niche</topic><topic>Stem cells</topic><topic>Three dimensional</topic><topic>Wnt Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Toshiro</creatorcontrib><creatorcontrib>Clevers, Hans</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Toshiro</au><au>Clevers, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-06-07</date><risdate>2013</risdate><volume>340</volume><issue>6137</issue><spage>1190</spage><epage>1194</epage><pages>1190-1194</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Recent examples have highlighted how stem cells have the capability to initiate morphogenesis in vitro; that is, to generate complex structures in culture that closely parallel their in vivo counterparts. Lgr5, the receptor for the Wnt-agonistic R-spondins, marks stem cells in multiple adult organs of mice and humans. In R-spondin-based three-dimensional cultures, these Lgr5 stem cells can grow into ever-expanding epithelial organoids that retain their original organ identity. Single Lgr5 stem cells derived from the intestine can be cultured to build epithelial structures that retain hallmarks of the in vivo epithelium. Here, we review the mechanisms that support this notable example of self-organization and discuss applications of this technology for stem cell research, disease modeling (e.g., for colorectal cancer and cystic fibrosis), and regenerative medicine.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23744940</pmid><doi>10.1126/science.1234852</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2013-06, Vol.340 (6137), p.1190-1194 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808061734 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | Adult Stem Cells - physiology Animals Cell Count Cell culture Cell Culture Techniques Cell lines Cellular differentiation Construction Crypts Culture Cystic fibrosis Daughter cells Disease Models, Animal Enteroendocrine cells Ephrin-B1 - metabolism Epithelial cells Epithelium Humans Intestinal Mucosa - physiology Intestine, Small - growth & development Intestines Mesenchymal stem cells Mice Morphogenesis Organoids Organs Receptors, G-Protein-Coupled - genetics Regenerative Medicine REVIEWS Stem Cell Niche Stem cells Three dimensional Wnt Proteins - metabolism |
title | Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growing%20Self-Organizing%20Mini-Guts%20from%20a%20Single%20Intestinal%20Stem%20Cell:%20Mechanism%20and%20Applications&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Sato,%20Toshiro&rft.date=2013-06-07&rft.volume=340&rft.issue=6137&rft.spage=1190&rft.epage=1194&rft.pages=1190-1194&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1234852&rft_dat=%3Cjstor_proqu%3E41985454%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365697657&rft_id=info:pmid/23744940&rft_jstor_id=41985454&rfr_iscdi=true |