Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications

Recent examples have highlighted how stem cells have the capability to initiate morphogenesis in vitro; that is, to generate complex structures in culture that closely parallel their in vivo counterparts. Lgr5, the receptor for the Wnt-agonistic R-spondins, marks stem cells in multiple adult organs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2013-06, Vol.340 (6137), p.1190-1194
Hauptverfasser: Sato, Toshiro, Clevers, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1194
container_issue 6137
container_start_page 1190
container_title Science (American Association for the Advancement of Science)
container_volume 340
creator Sato, Toshiro
Clevers, Hans
description Recent examples have highlighted how stem cells have the capability to initiate morphogenesis in vitro; that is, to generate complex structures in culture that closely parallel their in vivo counterparts. Lgr5, the receptor for the Wnt-agonistic R-spondins, marks stem cells in multiple adult organs of mice and humans. In R-spondin-based three-dimensional cultures, these Lgr5 stem cells can grow into ever-expanding epithelial organoids that retain their original organ identity. Single Lgr5 stem cells derived from the intestine can be cultured to build epithelial structures that retain hallmarks of the in vivo epithelium. Here, we review the mechanisms that support this notable example of self-organization and discuss applications of this technology for stem cell research, disease modeling (e.g., for colorectal cancer and cystic fibrosis), and regenerative medicine.
doi_str_mv 10.1126/science.1234852
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808061734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41985454</jstor_id><sourcerecordid>41985454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-b824acb15e0c6d3e127aca1ccedce5b320a40c2dab16192215f1812dbc9b5ef03</originalsourceid><addsrcrecordid>eNqF0U1P3DAQBmCrKioL9NxTkSUuvQQ8_krcG1q1WyQQh6Xn1HEm1KvEWexEqP31GO3CgQsny55nRmO9hHwBdg7A9UVyHoPDc-BCVop_IAtgRhWGM_GRLBgTuqhYqQ7JUUobxnLNiE_kkItSSiPZgvxZxfHRh3u6xr4rbuO9Df7_8_3GB1-s5inRLo4DtXSdX3ukV2HCNPlge7qecKBL7Pvv9Abd39yZMgwtvdxue-_s5MeQTshBZ_uEn_fnMfn988fd8ldxfbu6Wl5eF05KPRVNxaV1DShkTrcCgZfWWXAOW4eqEZxZyRxvbQMaDOegOqiAt40zjcKOiWPybTd3G8eHOa9YDz65vJwNOM6phopVTEMp5PtUaGUMGCUyPXtDN-Mc8-d3SptSqzKri51ycUwpYldvox9s_FcDq59zqvc51fuccsfpfu7cDNi--pdgMvi6A5s0jfG1LsFUSiopngCySpiL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365697657</pqid></control><display><type>article</type><title>Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Sato, Toshiro ; Clevers, Hans</creator><creatorcontrib>Sato, Toshiro ; Clevers, Hans</creatorcontrib><description>Recent examples have highlighted how stem cells have the capability to initiate morphogenesis in vitro; that is, to generate complex structures in culture that closely parallel their in vivo counterparts. Lgr5, the receptor for the Wnt-agonistic R-spondins, marks stem cells in multiple adult organs of mice and humans. In R-spondin-based three-dimensional cultures, these Lgr5 stem cells can grow into ever-expanding epithelial organoids that retain their original organ identity. Single Lgr5 stem cells derived from the intestine can be cultured to build epithelial structures that retain hallmarks of the in vivo epithelium. Here, we review the mechanisms that support this notable example of self-organization and discuss applications of this technology for stem cell research, disease modeling (e.g., for colorectal cancer and cystic fibrosis), and regenerative medicine.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1234852</identifier><identifier>PMID: 23744940</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adult Stem Cells - physiology ; Animals ; Cell Count ; Cell culture ; Cell Culture Techniques ; Cell lines ; Cellular differentiation ; Construction ; Crypts ; Culture ; Cystic fibrosis ; Daughter cells ; Disease Models, Animal ; Enteroendocrine cells ; Ephrin-B1 - metabolism ; Epithelial cells ; Epithelium ; Humans ; Intestinal Mucosa - physiology ; Intestine, Small - growth &amp; development ; Intestines ; Mesenchymal stem cells ; Mice ; Morphogenesis ; Organoids ; Organs ; Receptors, G-Protein-Coupled - genetics ; Regenerative Medicine ; REVIEWS ; Stem Cell Niche ; Stem cells ; Three dimensional ; Wnt Proteins - metabolism</subject><ispartof>Science (American Association for the Advancement of Science), 2013-06, Vol.340 (6137), p.1190-1194</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-b824acb15e0c6d3e127aca1ccedce5b320a40c2dab16192215f1812dbc9b5ef03</citedby><cites>FETCH-LOGICAL-c446t-b824acb15e0c6d3e127aca1ccedce5b320a40c2dab16192215f1812dbc9b5ef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41985454$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41985454$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23744940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sato, Toshiro</creatorcontrib><creatorcontrib>Clevers, Hans</creatorcontrib><title>Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Recent examples have highlighted how stem cells have the capability to initiate morphogenesis in vitro; that is, to generate complex structures in culture that closely parallel their in vivo counterparts. Lgr5, the receptor for the Wnt-agonistic R-spondins, marks stem cells in multiple adult organs of mice and humans. In R-spondin-based three-dimensional cultures, these Lgr5 stem cells can grow into ever-expanding epithelial organoids that retain their original organ identity. Single Lgr5 stem cells derived from the intestine can be cultured to build epithelial structures that retain hallmarks of the in vivo epithelium. Here, we review the mechanisms that support this notable example of self-organization and discuss applications of this technology for stem cell research, disease modeling (e.g., for colorectal cancer and cystic fibrosis), and regenerative medicine.</description><subject>Adult Stem Cells - physiology</subject><subject>Animals</subject><subject>Cell Count</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Cell lines</subject><subject>Cellular differentiation</subject><subject>Construction</subject><subject>Crypts</subject><subject>Culture</subject><subject>Cystic fibrosis</subject><subject>Daughter cells</subject><subject>Disease Models, Animal</subject><subject>Enteroendocrine cells</subject><subject>Ephrin-B1 - metabolism</subject><subject>Epithelial cells</subject><subject>Epithelium</subject><subject>Humans</subject><subject>Intestinal Mucosa - physiology</subject><subject>Intestine, Small - growth &amp; development</subject><subject>Intestines</subject><subject>Mesenchymal stem cells</subject><subject>Mice</subject><subject>Morphogenesis</subject><subject>Organoids</subject><subject>Organs</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Regenerative Medicine</subject><subject>REVIEWS</subject><subject>Stem Cell Niche</subject><subject>Stem cells</subject><subject>Three dimensional</subject><subject>Wnt Proteins - metabolism</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1P3DAQBmCrKioL9NxTkSUuvQQ8_krcG1q1WyQQh6Xn1HEm1KvEWexEqP31GO3CgQsny55nRmO9hHwBdg7A9UVyHoPDc-BCVop_IAtgRhWGM_GRLBgTuqhYqQ7JUUobxnLNiE_kkItSSiPZgvxZxfHRh3u6xr4rbuO9Df7_8_3GB1-s5inRLo4DtXSdX3ukV2HCNPlge7qecKBL7Pvv9Abd39yZMgwtvdxue-_s5MeQTshBZ_uEn_fnMfn988fd8ldxfbu6Wl5eF05KPRVNxaV1DShkTrcCgZfWWXAOW4eqEZxZyRxvbQMaDOegOqiAt40zjcKOiWPybTd3G8eHOa9YDz65vJwNOM6phopVTEMp5PtUaGUMGCUyPXtDN-Mc8-d3SptSqzKri51ycUwpYldvox9s_FcDq59zqvc51fuccsfpfu7cDNi--pdgMvi6A5s0jfG1LsFUSiopngCySpiL</recordid><startdate>20130607</startdate><enddate>20130607</enddate><creator>Sato, Toshiro</creator><creator>Clevers, Hans</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130607</creationdate><title>Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications</title><author>Sato, Toshiro ; Clevers, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-b824acb15e0c6d3e127aca1ccedce5b320a40c2dab16192215f1812dbc9b5ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult Stem Cells - physiology</topic><topic>Animals</topic><topic>Cell Count</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Cell lines</topic><topic>Cellular differentiation</topic><topic>Construction</topic><topic>Crypts</topic><topic>Culture</topic><topic>Cystic fibrosis</topic><topic>Daughter cells</topic><topic>Disease Models, Animal</topic><topic>Enteroendocrine cells</topic><topic>Ephrin-B1 - metabolism</topic><topic>Epithelial cells</topic><topic>Epithelium</topic><topic>Humans</topic><topic>Intestinal Mucosa - physiology</topic><topic>Intestine, Small - growth &amp; development</topic><topic>Intestines</topic><topic>Mesenchymal stem cells</topic><topic>Mice</topic><topic>Morphogenesis</topic><topic>Organoids</topic><topic>Organs</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Regenerative Medicine</topic><topic>REVIEWS</topic><topic>Stem Cell Niche</topic><topic>Stem cells</topic><topic>Three dimensional</topic><topic>Wnt Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Toshiro</creatorcontrib><creatorcontrib>Clevers, Hans</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Toshiro</au><au>Clevers, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-06-07</date><risdate>2013</risdate><volume>340</volume><issue>6137</issue><spage>1190</spage><epage>1194</epage><pages>1190-1194</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Recent examples have highlighted how stem cells have the capability to initiate morphogenesis in vitro; that is, to generate complex structures in culture that closely parallel their in vivo counterparts. Lgr5, the receptor for the Wnt-agonistic R-spondins, marks stem cells in multiple adult organs of mice and humans. In R-spondin-based three-dimensional cultures, these Lgr5 stem cells can grow into ever-expanding epithelial organoids that retain their original organ identity. Single Lgr5 stem cells derived from the intestine can be cultured to build epithelial structures that retain hallmarks of the in vivo epithelium. Here, we review the mechanisms that support this notable example of self-organization and discuss applications of this technology for stem cell research, disease modeling (e.g., for colorectal cancer and cystic fibrosis), and regenerative medicine.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23744940</pmid><doi>10.1126/science.1234852</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2013-06, Vol.340 (6137), p.1190-1194
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1808061734
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Adult Stem Cells - physiology
Animals
Cell Count
Cell culture
Cell Culture Techniques
Cell lines
Cellular differentiation
Construction
Crypts
Culture
Cystic fibrosis
Daughter cells
Disease Models, Animal
Enteroendocrine cells
Ephrin-B1 - metabolism
Epithelial cells
Epithelium
Humans
Intestinal Mucosa - physiology
Intestine, Small - growth & development
Intestines
Mesenchymal stem cells
Mice
Morphogenesis
Organoids
Organs
Receptors, G-Protein-Coupled - genetics
Regenerative Medicine
REVIEWS
Stem Cell Niche
Stem cells
Three dimensional
Wnt Proteins - metabolism
title Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growing%20Self-Organizing%20Mini-Guts%20from%20a%20Single%20Intestinal%20Stem%20Cell:%20Mechanism%20and%20Applications&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Sato,%20Toshiro&rft.date=2013-06-07&rft.volume=340&rft.issue=6137&rft.spage=1190&rft.epage=1194&rft.pages=1190-1194&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1234852&rft_dat=%3Cjstor_proqu%3E41985454%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365697657&rft_id=info:pmid/23744940&rft_jstor_id=41985454&rfr_iscdi=true