Division of labor in a swarm of autonomous underwater robots by improved partitioning social inhibition

In this paper, a distributed algorithm for adaptive task allocation and adaptable partitioning of a swarm into different work-groups is proposed and used in a swarm of underwater robots. The algorithm is based on local interactions of agents and is inspired by honeybee age-polyethism. It is adaptive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Adaptive behavior 2016-04, Vol.24 (2), p.87-101
Hauptverfasser: Zahadat, Payam, Schmickl, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 2
container_start_page 87
container_title Adaptive behavior
container_volume 24
creator Zahadat, Payam
Schmickl, Thomas
description In this paper, a distributed algorithm for adaptive task allocation and adaptable partitioning of a swarm into different work-groups is proposed and used in a swarm of underwater robots. The algorithm is based on local interactions of agents and is inspired by honeybee age-polyethism. It is adaptive to changes in the swarm size (workforce) and relative demands (workload) for different tasks and it limits the number of switchings of agents between different tasks enabling specialization of agents. The preliminary version of the algorithm was introduced previously. Here a fully decentralized version of the algorithm is proposed that improves the previous version by removing the need for global information. The algorithm is successfully implemented in swarms of physically-embodied underwater robots while the swarm size and the demands for the tasks change over the course of the experiments.
doi_str_mv 10.1177/1059712316633028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808061627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1059712316633028</sage_id><sourcerecordid>1785250231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-2cbb0bf68007adae95e39670b20edde9521f1e6f0232e96782640ecbd310105d3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwM3pkCdzZjZ2OqHxKSCwwR3biFFdJXOykVf97rpQJCTHZd-93z37H2CXCNaLWNwj5XKOQqJSUIIojNkE9w0xQeUx3krO9fsrOUloBgCJ-wpZ3fuOTDz0PDW-NDZH7nhuetiZ2-54Zh9CHLoyJj33t4tYMLvIYbBgStzvuu3UMG1fztYmDH8jJ90ueQuVNS1Yf3n43z9lJY9rkLn7OKXt_uH9bPGUvr4_Pi9uXrJqhHDJRWQu2UQWANrVx89zJudJgBbi6plJgg041IKRwJBRCzcBVtpYIFLGWU3Z18KVffY4uDWXnU-Xa1vSOMpRYQAEKldD_o7rIRU4vIaFwQKsYUoquKdfRdybuSoRyv_7y9_ppJDuMJLN05SqMsafcf_NfPH2Fag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785250231</pqid></control><display><type>article</type><title>Division of labor in a swarm of autonomous underwater robots by improved partitioning social inhibition</title><source>Access via SAGE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zahadat, Payam ; Schmickl, Thomas</creator><creatorcontrib>Zahadat, Payam ; Schmickl, Thomas</creatorcontrib><description>In this paper, a distributed algorithm for adaptive task allocation and adaptable partitioning of a swarm into different work-groups is proposed and used in a swarm of underwater robots. The algorithm is based on local interactions of agents and is inspired by honeybee age-polyethism. It is adaptive to changes in the swarm size (workforce) and relative demands (workload) for different tasks and it limits the number of switchings of agents between different tasks enabling specialization of agents. The preliminary version of the algorithm was introduced previously. Here a fully decentralized version of the algorithm is proposed that improves the previous version by removing the need for global information. The algorithm is successfully implemented in swarms of physically-embodied underwater robots while the swarm size and the demands for the tasks change over the course of the experiments.</description><identifier>ISSN: 1059-7123</identifier><identifier>EISSN: 1741-2633</identifier><identifier>DOI: 10.1177/1059712316633028</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adaptive algorithms ; Algorithms ; Allocations ; Demand ; Partitioning ; Tasks ; Underwater robots ; Workload</subject><ispartof>Adaptive behavior, 2016-04, Vol.24 (2), p.87-101</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-2cbb0bf68007adae95e39670b20edde9521f1e6f0232e96782640ecbd310105d3</citedby><cites>FETCH-LOGICAL-c413t-2cbb0bf68007adae95e39670b20edde9521f1e6f0232e96782640ecbd310105d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1059712316633028$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1059712316633028$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Zahadat, Payam</creatorcontrib><creatorcontrib>Schmickl, Thomas</creatorcontrib><title>Division of labor in a swarm of autonomous underwater robots by improved partitioning social inhibition</title><title>Adaptive behavior</title><description>In this paper, a distributed algorithm for adaptive task allocation and adaptable partitioning of a swarm into different work-groups is proposed and used in a swarm of underwater robots. The algorithm is based on local interactions of agents and is inspired by honeybee age-polyethism. It is adaptive to changes in the swarm size (workforce) and relative demands (workload) for different tasks and it limits the number of switchings of agents between different tasks enabling specialization of agents. The preliminary version of the algorithm was introduced previously. Here a fully decentralized version of the algorithm is proposed that improves the previous version by removing the need for global information. The algorithm is successfully implemented in swarms of physically-embodied underwater robots while the swarm size and the demands for the tasks change over the course of the experiments.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Allocations</subject><subject>Demand</subject><subject>Partitioning</subject><subject>Tasks</subject><subject>Underwater robots</subject><subject>Workload</subject><issn>1059-7123</issn><issn>1741-2633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqWwM3pkCdzZjZ2OqHxKSCwwR3biFFdJXOykVf97rpQJCTHZd-93z37H2CXCNaLWNwj5XKOQqJSUIIojNkE9w0xQeUx3krO9fsrOUloBgCJ-wpZ3fuOTDz0PDW-NDZH7nhuetiZ2-54Zh9CHLoyJj33t4tYMLvIYbBgStzvuu3UMG1fztYmDH8jJ90ueQuVNS1Yf3n43z9lJY9rkLn7OKXt_uH9bPGUvr4_Pi9uXrJqhHDJRWQu2UQWANrVx89zJudJgBbi6plJgg041IKRwJBRCzcBVtpYIFLGWU3Z18KVffY4uDWXnU-Xa1vSOMpRYQAEKldD_o7rIRU4vIaFwQKsYUoquKdfRdybuSoRyv_7y9_ppJDuMJLN05SqMsafcf_NfPH2Fag</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Zahadat, Payam</creator><creator>Schmickl, Thomas</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160401</creationdate><title>Division of labor in a swarm of autonomous underwater robots by improved partitioning social inhibition</title><author>Zahadat, Payam ; Schmickl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-2cbb0bf68007adae95e39670b20edde9521f1e6f0232e96782640ecbd310105d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Allocations</topic><topic>Demand</topic><topic>Partitioning</topic><topic>Tasks</topic><topic>Underwater robots</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahadat, Payam</creatorcontrib><creatorcontrib>Schmickl, Thomas</creatorcontrib><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Adaptive behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahadat, Payam</au><au>Schmickl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Division of labor in a swarm of autonomous underwater robots by improved partitioning social inhibition</atitle><jtitle>Adaptive behavior</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>24</volume><issue>2</issue><spage>87</spage><epage>101</epage><pages>87-101</pages><issn>1059-7123</issn><eissn>1741-2633</eissn><abstract>In this paper, a distributed algorithm for adaptive task allocation and adaptable partitioning of a swarm into different work-groups is proposed and used in a swarm of underwater robots. The algorithm is based on local interactions of agents and is inspired by honeybee age-polyethism. It is adaptive to changes in the swarm size (workforce) and relative demands (workload) for different tasks and it limits the number of switchings of agents between different tasks enabling specialization of agents. The preliminary version of the algorithm was introduced previously. Here a fully decentralized version of the algorithm is proposed that improves the previous version by removing the need for global information. The algorithm is successfully implemented in swarms of physically-embodied underwater robots while the swarm size and the demands for the tasks change over the course of the experiments.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1059712316633028</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-7123
ispartof Adaptive behavior, 2016-04, Vol.24 (2), p.87-101
issn 1059-7123
1741-2633
language eng
recordid cdi_proquest_miscellaneous_1808061627
source Access via SAGE; EZB-FREE-00999 freely available EZB journals
subjects Adaptive algorithms
Algorithms
Allocations
Demand
Partitioning
Tasks
Underwater robots
Workload
title Division of labor in a swarm of autonomous underwater robots by improved partitioning social inhibition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Division%20of%20labor%20in%20a%20swarm%20of%20autonomous%20underwater%20robots%20by%20improved%20partitioning%20social%20inhibition&rft.jtitle=Adaptive%20behavior&rft.au=Zahadat,%20Payam&rft.date=2016-04-01&rft.volume=24&rft.issue=2&rft.spage=87&rft.epage=101&rft.pages=87-101&rft.issn=1059-7123&rft.eissn=1741-2633&rft_id=info:doi/10.1177/1059712316633028&rft_dat=%3Cproquest_cross%3E1785250231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785250231&rft_id=info:pmid/&rft_sage_id=10.1177_1059712316633028&rfr_iscdi=true