Frozen ZnS Aqueous Suspension Nonlinear Optical Properties

The study of nonlinear effects, caused by nanosecond laser pulses’ impact on the frozen ZnS nanoparticles’ suspension, is presented. Laser pulses excite strong nanoparticles’ coherent vibrations in the near-terahertz range which lead to different nonlinear effects: X-ray emission, stimulated low-fre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermophysics 2015-11, Vol.36 (10-11), p.2784-2791
Hauptverfasser: Ehrlich, H., Kudryavtseva, A., Lisichkin, G., Savranskii, V., Tcherniega, N., Zemskov, K., Zhilenko, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2791
container_issue 10-11
container_start_page 2784
container_title International journal of thermophysics
container_volume 36
creator Ehrlich, H.
Kudryavtseva, A.
Lisichkin, G.
Savranskii, V.
Tcherniega, N.
Zemskov, K.
Zhilenko, M.
description The study of nonlinear effects, caused by nanosecond laser pulses’ impact on the frozen ZnS nanoparticles’ suspension, is presented. Laser pulses excite strong nanoparticles’ coherent vibrations in the near-terahertz range which lead to different nonlinear effects: X-ray emission, stimulated low-frequency Raman scattering, and luminescence. X-ray emission was observed as bright spots on the special X-ray film. This provides evidence that an X-ray propagates with narrow beams. Stimulated low-frequency Raman scattering is a result of light scattering by acoustic vibrations of nanoparticles. Its frequency shift corresponds to the nanoparticles’ eigenvibration frequencies and depends on the sample material and particle’s dimension. It was measured with the help of a Fabri-Perot interferometer in the range of dispersion 16.67 cm - 1 . For ZnS, the first Stokes component frequency shift is equal to 465 GHz. Under excitation by 20 ns ruby laser pulses, the luminescence of the frozen ZnS nanoparticles’ suspension was observed in two bands located at 480 nm and 510 nm. Its duration was more than 3 s.
doi_str_mv 10.1007/s10765-015-1972-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808060939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808060939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-a61fcdd5e7537d95bf7b59130f656d978a7a2368a0217c5b7e373c88074bb9033</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gyshjOMf5iqyoKSBVFKkiIxXIcB6VK7WAnA_x6XIWZ6W54n9N7D0KXBK4JgLhJBARnGAjDRIkS8yM0IywvinFxjGZAFMOqlO-n6CylHQAooegM3a1i-HG--PDbYvE1ujCmYjum3vnUBl88B9-13plYbPqhtaYrXmLoXRxal87RSWO65C7-5hy9re5fl494vXl4Wi7W2FJFBmw4aWxdMycYFbViVSMqpgiFhjNeKyGNMCXl0kBJhGWVcFRQKyWI26pSQOkcXU13-xhywzTofZus6zrjD3U1kSCBg6IqR8kUtTGkFF2j-9juTfzWBPTBk5486exJHzxpnplyYlLO-k8X9S6M0eeP_oF-AUPraiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808060939</pqid></control><display><type>article</type><title>Frozen ZnS Aqueous Suspension Nonlinear Optical Properties</title><source>Springer Nature - Complete Springer Journals</source><creator>Ehrlich, H. ; Kudryavtseva, A. ; Lisichkin, G. ; Savranskii, V. ; Tcherniega, N. ; Zemskov, K. ; Zhilenko, M.</creator><creatorcontrib>Ehrlich, H. ; Kudryavtseva, A. ; Lisichkin, G. ; Savranskii, V. ; Tcherniega, N. ; Zemskov, K. ; Zhilenko, M.</creatorcontrib><description>The study of nonlinear effects, caused by nanosecond laser pulses’ impact on the frozen ZnS nanoparticles’ suspension, is presented. Laser pulses excite strong nanoparticles’ coherent vibrations in the near-terahertz range which lead to different nonlinear effects: X-ray emission, stimulated low-frequency Raman scattering, and luminescence. X-ray emission was observed as bright spots on the special X-ray film. This provides evidence that an X-ray propagates with narrow beams. Stimulated low-frequency Raman scattering is a result of light scattering by acoustic vibrations of nanoparticles. Its frequency shift corresponds to the nanoparticles’ eigenvibration frequencies and depends on the sample material and particle’s dimension. It was measured with the help of a Fabri-Perot interferometer in the range of dispersion 16.67 cm - 1 . For ZnS, the first Stokes component frequency shift is equal to 465 GHz. Under excitation by 20 ns ruby laser pulses, the luminescence of the frozen ZnS nanoparticles’ suspension was observed in two bands located at 480 nm and 510 nm. Its duration was more than 3 s.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-015-1972-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical Mechanics ; Condensed Matter Physics ; Freezing ; Frequency shift ; Frozen ; Industrial Chemistry/Chemical Engineering ; Nanoparticles ; Nonlinearity ; Physical Chemistry ; Physics ; Physics and Astronomy ; Vibration ; X-rays ; Zinc sulfides</subject><ispartof>International journal of thermophysics, 2015-11, Vol.36 (10-11), p.2784-2791</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-a61fcdd5e7537d95bf7b59130f656d978a7a2368a0217c5b7e373c88074bb9033</citedby><cites>FETCH-LOGICAL-c391t-a61fcdd5e7537d95bf7b59130f656d978a7a2368a0217c5b7e373c88074bb9033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10765-015-1972-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10765-015-1972-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ehrlich, H.</creatorcontrib><creatorcontrib>Kudryavtseva, A.</creatorcontrib><creatorcontrib>Lisichkin, G.</creatorcontrib><creatorcontrib>Savranskii, V.</creatorcontrib><creatorcontrib>Tcherniega, N.</creatorcontrib><creatorcontrib>Zemskov, K.</creatorcontrib><creatorcontrib>Zhilenko, M.</creatorcontrib><title>Frozen ZnS Aqueous Suspension Nonlinear Optical Properties</title><title>International journal of thermophysics</title><addtitle>Int J Thermophys</addtitle><description>The study of nonlinear effects, caused by nanosecond laser pulses’ impact on the frozen ZnS nanoparticles’ suspension, is presented. Laser pulses excite strong nanoparticles’ coherent vibrations in the near-terahertz range which lead to different nonlinear effects: X-ray emission, stimulated low-frequency Raman scattering, and luminescence. X-ray emission was observed as bright spots on the special X-ray film. This provides evidence that an X-ray propagates with narrow beams. Stimulated low-frequency Raman scattering is a result of light scattering by acoustic vibrations of nanoparticles. Its frequency shift corresponds to the nanoparticles’ eigenvibration frequencies and depends on the sample material and particle’s dimension. It was measured with the help of a Fabri-Perot interferometer in the range of dispersion 16.67 cm - 1 . For ZnS, the first Stokes component frequency shift is equal to 465 GHz. Under excitation by 20 ns ruby laser pulses, the luminescence of the frozen ZnS nanoparticles’ suspension was observed in two bands located at 480 nm and 510 nm. Its duration was more than 3 s.</description><subject>Classical Mechanics</subject><subject>Condensed Matter Physics</subject><subject>Freezing</subject><subject>Frequency shift</subject><subject>Frozen</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nanoparticles</subject><subject>Nonlinearity</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Vibration</subject><subject>X-rays</subject><subject>Zinc sulfides</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gyshjOMf5iqyoKSBVFKkiIxXIcB6VK7WAnA_x6XIWZ6W54n9N7D0KXBK4JgLhJBARnGAjDRIkS8yM0IywvinFxjGZAFMOqlO-n6CylHQAooegM3a1i-HG--PDbYvE1ujCmYjum3vnUBl88B9-13plYbPqhtaYrXmLoXRxal87RSWO65C7-5hy9re5fl494vXl4Wi7W2FJFBmw4aWxdMycYFbViVSMqpgiFhjNeKyGNMCXl0kBJhGWVcFRQKyWI26pSQOkcXU13-xhywzTofZus6zrjD3U1kSCBg6IqR8kUtTGkFF2j-9juTfzWBPTBk5486exJHzxpnplyYlLO-k8X9S6M0eeP_oF-AUPraiw</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Ehrlich, H.</creator><creator>Kudryavtseva, A.</creator><creator>Lisichkin, G.</creator><creator>Savranskii, V.</creator><creator>Tcherniega, N.</creator><creator>Zemskov, K.</creator><creator>Zhilenko, M.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20151101</creationdate><title>Frozen ZnS Aqueous Suspension Nonlinear Optical Properties</title><author>Ehrlich, H. ; Kudryavtseva, A. ; Lisichkin, G. ; Savranskii, V. ; Tcherniega, N. ; Zemskov, K. ; Zhilenko, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-a61fcdd5e7537d95bf7b59130f656d978a7a2368a0217c5b7e373c88074bb9033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical Mechanics</topic><topic>Condensed Matter Physics</topic><topic>Freezing</topic><topic>Frequency shift</topic><topic>Frozen</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nanoparticles</topic><topic>Nonlinearity</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Vibration</topic><topic>X-rays</topic><topic>Zinc sulfides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehrlich, H.</creatorcontrib><creatorcontrib>Kudryavtseva, A.</creatorcontrib><creatorcontrib>Lisichkin, G.</creatorcontrib><creatorcontrib>Savranskii, V.</creatorcontrib><creatorcontrib>Tcherniega, N.</creatorcontrib><creatorcontrib>Zemskov, K.</creatorcontrib><creatorcontrib>Zhilenko, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehrlich, H.</au><au>Kudryavtseva, A.</au><au>Lisichkin, G.</au><au>Savranskii, V.</au><au>Tcherniega, N.</au><au>Zemskov, K.</au><au>Zhilenko, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frozen ZnS Aqueous Suspension Nonlinear Optical Properties</atitle><jtitle>International journal of thermophysics</jtitle><stitle>Int J Thermophys</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>36</volume><issue>10-11</issue><spage>2784</spage><epage>2791</epage><pages>2784-2791</pages><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>The study of nonlinear effects, caused by nanosecond laser pulses’ impact on the frozen ZnS nanoparticles’ suspension, is presented. Laser pulses excite strong nanoparticles’ coherent vibrations in the near-terahertz range which lead to different nonlinear effects: X-ray emission, stimulated low-frequency Raman scattering, and luminescence. X-ray emission was observed as bright spots on the special X-ray film. This provides evidence that an X-ray propagates with narrow beams. Stimulated low-frequency Raman scattering is a result of light scattering by acoustic vibrations of nanoparticles. Its frequency shift corresponds to the nanoparticles’ eigenvibration frequencies and depends on the sample material and particle’s dimension. It was measured with the help of a Fabri-Perot interferometer in the range of dispersion 16.67 cm - 1 . For ZnS, the first Stokes component frequency shift is equal to 465 GHz. Under excitation by 20 ns ruby laser pulses, the luminescence of the frozen ZnS nanoparticles’ suspension was observed in two bands located at 480 nm and 510 nm. Its duration was more than 3 s.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10765-015-1972-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0195-928X
ispartof International journal of thermophysics, 2015-11, Vol.36 (10-11), p.2784-2791
issn 0195-928X
1572-9567
language eng
recordid cdi_proquest_miscellaneous_1808060939
source Springer Nature - Complete Springer Journals
subjects Classical Mechanics
Condensed Matter Physics
Freezing
Frequency shift
Frozen
Industrial Chemistry/Chemical Engineering
Nanoparticles
Nonlinearity
Physical Chemistry
Physics
Physics and Astronomy
Vibration
X-rays
Zinc sulfides
title Frozen ZnS Aqueous Suspension Nonlinear Optical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frozen%20ZnS%20Aqueous%20Suspension%20Nonlinear%20Optical%20Properties&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Ehrlich,%20H.&rft.date=2015-11-01&rft.volume=36&rft.issue=10-11&rft.spage=2784&rft.epage=2791&rft.pages=2784-2791&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-015-1972-6&rft_dat=%3Cproquest_cross%3E1808060939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808060939&rft_id=info:pmid/&rfr_iscdi=true