Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting

We report on the development of high performance triple and quadruple junction solar cells made of amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H) for the application as photocathodes in integrated photovoltaic-electrosynthetic devices for solar water splitting. We show that the electronic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2016-01, Vol.9 (1), p.145-154
Hauptverfasser: Urbain, Félix, Smirnov, Vladimir, Becker, Jan-Philipp, Lambertz, Andreas, Yang, Florent, Ziegler, Jürgen, Kaiser, Bernhard, Jaegermann, Wolfram, Rau, Uwe, Finger, Friedhelm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 145
container_title Energy & environmental science
container_volume 9
creator Urbain, Félix
Smirnov, Vladimir
Becker, Jan-Philipp
Lambertz, Andreas
Yang, Florent
Ziegler, Jürgen
Kaiser, Bernhard
Jaegermann, Wolfram
Rau, Uwe
Finger, Friedhelm
description We report on the development of high performance triple and quadruple junction solar cells made of amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H) for the application as photocathodes in integrated photovoltaic-electrosynthetic devices for solar water splitting. We show that the electronic properties of the individual sub cells can be adjusted such that the photovoltages of multijunction devices cover a wide range of photovoltages from 2.0 V up to 2.8 V with photovoltaic efficiencies of 13.6% for triple and 13.2% for quadruple cells. The ability to provide self-contained solar water splitting is demonstrated in a PV-biased electrosynthetic (PV-EC) cell. With the developed triple junction photocathode in the a-Si:H/a-Si:H/μc-Si:H configuration we achieved an operation photocurrent density of 7.7 mA cm −2 at 0 V applied bias using a Ag/Pt layer stack as photocathode/electrolyte contact and ruthenium oxide as counter electrode. Assuming a faradaic efficiency of 100%, this corresponds to a solar-to-hydrogen efficiency of 9.5%. The quadruple junction device provides enough excess voltage to substitute precious metal catalyst, such as Pt by more earth-abundant materials, such as Ni without impairing the solar-to-hydrogen efficiency. Bias-free solar water splitting is demonstrated using thin film silicon based triple and quadruple junction solar cells with solar-to-hydrogen efficiencies up to 9.5%.
doi_str_mv 10.1039/c5ee02393a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808060769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787974917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1c43f3b28a132197b4e2d9a22db42a5bfabfa2348f2df9bd5a8c70a5b6c0ee593</originalsourceid><addsrcrecordid>eNqNkc1LwzAYxoMoOKcX70KOInTmo22a4xibChMPflxLmiZrRtbUJHX431utH1fhheeB34_38gBwjtEMI8qvZaYUIpRTcQAmmGVpkjGUH_70nJNjcBLCFqGcIMYnwN33Nppt38poXAsfDewaF50UsXG1CnBvYgNj34rKqhG9ORvFZkDaux0kMwRfYHRDKYainYfWbJoITVv3UtVwL6LyMHTWxGjazSk40sIGdfadU_C8Wj4tbpP1w83dYr5OJOUkJlimVNOKFAJTgjmrUkVqLgipq5SIrNJiOELTQpNa86rORCEZGkAukVIZp1NwOf7tvHvtVYjlzgSprBWtcn0ocYEKlCOW_0NlBeMs5ZgN6tWoSu9C8EqXnTc74d9LjMrPAcpFtlx-DTAf5ItR9kH-en8D0Q--W4MT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787974917</pqid></control><display><type>article</type><title>Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Urbain, Félix ; Smirnov, Vladimir ; Becker, Jan-Philipp ; Lambertz, Andreas ; Yang, Florent ; Ziegler, Jürgen ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Rau, Uwe ; Finger, Friedhelm</creator><creatorcontrib>Urbain, Félix ; Smirnov, Vladimir ; Becker, Jan-Philipp ; Lambertz, Andreas ; Yang, Florent ; Ziegler, Jürgen ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Rau, Uwe ; Finger, Friedhelm</creatorcontrib><description>We report on the development of high performance triple and quadruple junction solar cells made of amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H) for the application as photocathodes in integrated photovoltaic-electrosynthetic devices for solar water splitting. We show that the electronic properties of the individual sub cells can be adjusted such that the photovoltages of multijunction devices cover a wide range of photovoltages from 2.0 V up to 2.8 V with photovoltaic efficiencies of 13.6% for triple and 13.2% for quadruple cells. The ability to provide self-contained solar water splitting is demonstrated in a PV-biased electrosynthetic (PV-EC) cell. With the developed triple junction photocathode in the a-Si:H/a-Si:H/μc-Si:H configuration we achieved an operation photocurrent density of 7.7 mA cm −2 at 0 V applied bias using a Ag/Pt layer stack as photocathode/electrolyte contact and ruthenium oxide as counter electrode. Assuming a faradaic efficiency of 100%, this corresponds to a solar-to-hydrogen efficiency of 9.5%. The quadruple junction device provides enough excess voltage to substitute precious metal catalyst, such as Pt by more earth-abundant materials, such as Ni without impairing the solar-to-hydrogen efficiency. Bias-free solar water splitting is demonstrated using thin film silicon based triple and quadruple junction solar cells with solar-to-hydrogen efficiencies up to 9.5%.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c5ee02393a</identifier><language>eng</language><subject>Devices ; Electrolytic cells ; Photocathodes ; Photovoltages ; Photovoltaic cells ; Platinum ; Solar cells ; Water splitting</subject><ispartof>Energy &amp; environmental science, 2016-01, Vol.9 (1), p.145-154</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1c43f3b28a132197b4e2d9a22db42a5bfabfa2348f2df9bd5a8c70a5b6c0ee593</citedby><cites>FETCH-LOGICAL-c392t-1c43f3b28a132197b4e2d9a22db42a5bfabfa2348f2df9bd5a8c70a5b6c0ee593</cites><orcidid>0000-0001-5423-6818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Urbain, Félix</creatorcontrib><creatorcontrib>Smirnov, Vladimir</creatorcontrib><creatorcontrib>Becker, Jan-Philipp</creatorcontrib><creatorcontrib>Lambertz, Andreas</creatorcontrib><creatorcontrib>Yang, Florent</creatorcontrib><creatorcontrib>Ziegler, Jürgen</creatorcontrib><creatorcontrib>Kaiser, Bernhard</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Rau, Uwe</creatorcontrib><creatorcontrib>Finger, Friedhelm</creatorcontrib><title>Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting</title><title>Energy &amp; environmental science</title><description>We report on the development of high performance triple and quadruple junction solar cells made of amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H) for the application as photocathodes in integrated photovoltaic-electrosynthetic devices for solar water splitting. We show that the electronic properties of the individual sub cells can be adjusted such that the photovoltages of multijunction devices cover a wide range of photovoltages from 2.0 V up to 2.8 V with photovoltaic efficiencies of 13.6% for triple and 13.2% for quadruple cells. The ability to provide self-contained solar water splitting is demonstrated in a PV-biased electrosynthetic (PV-EC) cell. With the developed triple junction photocathode in the a-Si:H/a-Si:H/μc-Si:H configuration we achieved an operation photocurrent density of 7.7 mA cm −2 at 0 V applied bias using a Ag/Pt layer stack as photocathode/electrolyte contact and ruthenium oxide as counter electrode. Assuming a faradaic efficiency of 100%, this corresponds to a solar-to-hydrogen efficiency of 9.5%. The quadruple junction device provides enough excess voltage to substitute precious metal catalyst, such as Pt by more earth-abundant materials, such as Ni without impairing the solar-to-hydrogen efficiency. Bias-free solar water splitting is demonstrated using thin film silicon based triple and quadruple junction solar cells with solar-to-hydrogen efficiencies up to 9.5%.</description><subject>Devices</subject><subject>Electrolytic cells</subject><subject>Photocathodes</subject><subject>Photovoltages</subject><subject>Photovoltaic cells</subject><subject>Platinum</subject><subject>Solar cells</subject><subject>Water splitting</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1LwzAYxoMoOKcX70KOInTmo22a4xibChMPflxLmiZrRtbUJHX431utH1fhheeB34_38gBwjtEMI8qvZaYUIpRTcQAmmGVpkjGUH_70nJNjcBLCFqGcIMYnwN33Nppt38poXAsfDewaF50UsXG1CnBvYgNj34rKqhG9ORvFZkDaux0kMwRfYHRDKYainYfWbJoITVv3UtVwL6LyMHTWxGjazSk40sIGdfadU_C8Wj4tbpP1w83dYr5OJOUkJlimVNOKFAJTgjmrUkVqLgipq5SIrNJiOELTQpNa86rORCEZGkAukVIZp1NwOf7tvHvtVYjlzgSprBWtcn0ocYEKlCOW_0NlBeMs5ZgN6tWoSu9C8EqXnTc74d9LjMrPAcpFtlx-DTAf5ItR9kH-en8D0Q--W4MT</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Urbain, Félix</creator><creator>Smirnov, Vladimir</creator><creator>Becker, Jan-Philipp</creator><creator>Lambertz, Andreas</creator><creator>Yang, Florent</creator><creator>Ziegler, Jürgen</creator><creator>Kaiser, Bernhard</creator><creator>Jaegermann, Wolfram</creator><creator>Rau, Uwe</creator><creator>Finger, Friedhelm</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5423-6818</orcidid></search><sort><creationdate>20160101</creationdate><title>Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting</title><author>Urbain, Félix ; Smirnov, Vladimir ; Becker, Jan-Philipp ; Lambertz, Andreas ; Yang, Florent ; Ziegler, Jürgen ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Rau, Uwe ; Finger, Friedhelm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1c43f3b28a132197b4e2d9a22db42a5bfabfa2348f2df9bd5a8c70a5b6c0ee593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Devices</topic><topic>Electrolytic cells</topic><topic>Photocathodes</topic><topic>Photovoltages</topic><topic>Photovoltaic cells</topic><topic>Platinum</topic><topic>Solar cells</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urbain, Félix</creatorcontrib><creatorcontrib>Smirnov, Vladimir</creatorcontrib><creatorcontrib>Becker, Jan-Philipp</creatorcontrib><creatorcontrib>Lambertz, Andreas</creatorcontrib><creatorcontrib>Yang, Florent</creatorcontrib><creatorcontrib>Ziegler, Jürgen</creatorcontrib><creatorcontrib>Kaiser, Bernhard</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Rau, Uwe</creatorcontrib><creatorcontrib>Finger, Friedhelm</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urbain, Félix</au><au>Smirnov, Vladimir</au><au>Becker, Jan-Philipp</au><au>Lambertz, Andreas</au><au>Yang, Florent</au><au>Ziegler, Jürgen</au><au>Kaiser, Bernhard</au><au>Jaegermann, Wolfram</au><au>Rau, Uwe</au><au>Finger, Friedhelm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>9</volume><issue>1</issue><spage>145</spage><epage>154</epage><pages>145-154</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>We report on the development of high performance triple and quadruple junction solar cells made of amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H) for the application as photocathodes in integrated photovoltaic-electrosynthetic devices for solar water splitting. We show that the electronic properties of the individual sub cells can be adjusted such that the photovoltages of multijunction devices cover a wide range of photovoltages from 2.0 V up to 2.8 V with photovoltaic efficiencies of 13.6% for triple and 13.2% for quadruple cells. The ability to provide self-contained solar water splitting is demonstrated in a PV-biased electrosynthetic (PV-EC) cell. With the developed triple junction photocathode in the a-Si:H/a-Si:H/μc-Si:H configuration we achieved an operation photocurrent density of 7.7 mA cm −2 at 0 V applied bias using a Ag/Pt layer stack as photocathode/electrolyte contact and ruthenium oxide as counter electrode. Assuming a faradaic efficiency of 100%, this corresponds to a solar-to-hydrogen efficiency of 9.5%. The quadruple junction device provides enough excess voltage to substitute precious metal catalyst, such as Pt by more earth-abundant materials, such as Ni without impairing the solar-to-hydrogen efficiency. Bias-free solar water splitting is demonstrated using thin film silicon based triple and quadruple junction solar cells with solar-to-hydrogen efficiencies up to 9.5%.</abstract><doi>10.1039/c5ee02393a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5423-6818</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2016-01, Vol.9 (1), p.145-154
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_miscellaneous_1808060769
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Devices
Electrolytic cells
Photocathodes
Photovoltages
Photovoltaic cells
Platinum
Solar cells
Water splitting
title Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multijunction%20Si%20photocathodes%20with%20tunable%20photovoltages%20from%202.0%20V%20to%202.8%20V%20for%20light%20induced%20water%20splitting&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Urbain,%20F%C3%A9lix&rft.date=2016-01-01&rft.volume=9&rft.issue=1&rft.spage=145&rft.epage=154&rft.pages=145-154&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c5ee02393a&rft_dat=%3Cproquest_rsc_p%3E1787974917%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787974917&rft_id=info:pmid/&rfr_iscdi=true