Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting
We report on the development of high performance triple and quadruple junction solar cells made of amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H) for the application as photocathodes in integrated photovoltaic-electrosynthetic devices for solar water splitting. We show that the electronic...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2016-01, Vol.9 (1), p.145-154 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 1 |
container_start_page | 145 |
container_title | Energy & environmental science |
container_volume | 9 |
creator | Urbain, Félix Smirnov, Vladimir Becker, Jan-Philipp Lambertz, Andreas Yang, Florent Ziegler, Jürgen Kaiser, Bernhard Jaegermann, Wolfram Rau, Uwe Finger, Friedhelm |
description | We report on the development of high performance triple and quadruple junction solar cells made of amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H) for the application as photocathodes in integrated photovoltaic-electrosynthetic devices for solar water splitting. We show that the electronic properties of the individual sub cells can be adjusted such that the photovoltages of multijunction devices cover a wide range of photovoltages from 2.0 V up to 2.8 V with photovoltaic efficiencies of 13.6% for triple and 13.2% for quadruple cells. The ability to provide self-contained solar water splitting is demonstrated in a PV-biased electrosynthetic (PV-EC) cell. With the developed triple junction photocathode in the a-Si:H/a-Si:H/μc-Si:H configuration we achieved an operation photocurrent density of 7.7 mA cm
−2
at 0 V applied bias using a Ag/Pt layer stack as photocathode/electrolyte contact and ruthenium oxide as counter electrode. Assuming a faradaic efficiency of 100%, this corresponds to a solar-to-hydrogen efficiency of 9.5%. The quadruple junction device provides enough excess voltage to substitute precious metal catalyst, such as Pt by more earth-abundant materials, such as Ni without impairing the solar-to-hydrogen efficiency.
Bias-free solar water splitting is demonstrated using thin film silicon based triple and quadruple junction solar cells with solar-to-hydrogen efficiencies up to 9.5%. |
doi_str_mv | 10.1039/c5ee02393a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808060769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787974917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1c43f3b28a132197b4e2d9a22db42a5bfabfa2348f2df9bd5a8c70a5b6c0ee593</originalsourceid><addsrcrecordid>eNqNkc1LwzAYxoMoOKcX70KOInTmo22a4xibChMPflxLmiZrRtbUJHX431utH1fhheeB34_38gBwjtEMI8qvZaYUIpRTcQAmmGVpkjGUH_70nJNjcBLCFqGcIMYnwN33Nppt38poXAsfDewaF50UsXG1CnBvYgNj34rKqhG9ORvFZkDaux0kMwRfYHRDKYainYfWbJoITVv3UtVwL6LyMHTWxGjazSk40sIGdfadU_C8Wj4tbpP1w83dYr5OJOUkJlimVNOKFAJTgjmrUkVqLgipq5SIrNJiOELTQpNa86rORCEZGkAukVIZp1NwOf7tvHvtVYjlzgSprBWtcn0ocYEKlCOW_0NlBeMs5ZgN6tWoSu9C8EqXnTc74d9LjMrPAcpFtlx-DTAf5ItR9kH-en8D0Q--W4MT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787974917</pqid></control><display><type>article</type><title>Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Urbain, Félix ; Smirnov, Vladimir ; Becker, Jan-Philipp ; Lambertz, Andreas ; Yang, Florent ; Ziegler, Jürgen ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Rau, Uwe ; Finger, Friedhelm</creator><creatorcontrib>Urbain, Félix ; Smirnov, Vladimir ; Becker, Jan-Philipp ; Lambertz, Andreas ; Yang, Florent ; Ziegler, Jürgen ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Rau, Uwe ; Finger, Friedhelm</creatorcontrib><description>We report on the development of high performance triple and quadruple junction solar cells made of amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H) for the application as photocathodes in integrated photovoltaic-electrosynthetic devices for solar water splitting. We show that the electronic properties of the individual sub cells can be adjusted such that the photovoltages of multijunction devices cover a wide range of photovoltages from 2.0 V up to 2.8 V with photovoltaic efficiencies of 13.6% for triple and 13.2% for quadruple cells. The ability to provide self-contained solar water splitting is demonstrated in a PV-biased electrosynthetic (PV-EC) cell. With the developed triple junction photocathode in the a-Si:H/a-Si:H/μc-Si:H configuration we achieved an operation photocurrent density of 7.7 mA cm
−2
at 0 V applied bias using a Ag/Pt layer stack as photocathode/electrolyte contact and ruthenium oxide as counter electrode. Assuming a faradaic efficiency of 100%, this corresponds to a solar-to-hydrogen efficiency of 9.5%. The quadruple junction device provides enough excess voltage to substitute precious metal catalyst, such as Pt by more earth-abundant materials, such as Ni without impairing the solar-to-hydrogen efficiency.
Bias-free solar water splitting is demonstrated using thin film silicon based triple and quadruple junction solar cells with solar-to-hydrogen efficiencies up to 9.5%.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c5ee02393a</identifier><language>eng</language><subject>Devices ; Electrolytic cells ; Photocathodes ; Photovoltages ; Photovoltaic cells ; Platinum ; Solar cells ; Water splitting</subject><ispartof>Energy & environmental science, 2016-01, Vol.9 (1), p.145-154</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1c43f3b28a132197b4e2d9a22db42a5bfabfa2348f2df9bd5a8c70a5b6c0ee593</citedby><cites>FETCH-LOGICAL-c392t-1c43f3b28a132197b4e2d9a22db42a5bfabfa2348f2df9bd5a8c70a5b6c0ee593</cites><orcidid>0000-0001-5423-6818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Urbain, Félix</creatorcontrib><creatorcontrib>Smirnov, Vladimir</creatorcontrib><creatorcontrib>Becker, Jan-Philipp</creatorcontrib><creatorcontrib>Lambertz, Andreas</creatorcontrib><creatorcontrib>Yang, Florent</creatorcontrib><creatorcontrib>Ziegler, Jürgen</creatorcontrib><creatorcontrib>Kaiser, Bernhard</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Rau, Uwe</creatorcontrib><creatorcontrib>Finger, Friedhelm</creatorcontrib><title>Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting</title><title>Energy & environmental science</title><description>We report on the development of high performance triple and quadruple junction solar cells made of amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H) for the application as photocathodes in integrated photovoltaic-electrosynthetic devices for solar water splitting. We show that the electronic properties of the individual sub cells can be adjusted such that the photovoltages of multijunction devices cover a wide range of photovoltages from 2.0 V up to 2.8 V with photovoltaic efficiencies of 13.6% for triple and 13.2% for quadruple cells. The ability to provide self-contained solar water splitting is demonstrated in a PV-biased electrosynthetic (PV-EC) cell. With the developed triple junction photocathode in the a-Si:H/a-Si:H/μc-Si:H configuration we achieved an operation photocurrent density of 7.7 mA cm
−2
at 0 V applied bias using a Ag/Pt layer stack as photocathode/electrolyte contact and ruthenium oxide as counter electrode. Assuming a faradaic efficiency of 100%, this corresponds to a solar-to-hydrogen efficiency of 9.5%. The quadruple junction device provides enough excess voltage to substitute precious metal catalyst, such as Pt by more earth-abundant materials, such as Ni without impairing the solar-to-hydrogen efficiency.
Bias-free solar water splitting is demonstrated using thin film silicon based triple and quadruple junction solar cells with solar-to-hydrogen efficiencies up to 9.5%.</description><subject>Devices</subject><subject>Electrolytic cells</subject><subject>Photocathodes</subject><subject>Photovoltages</subject><subject>Photovoltaic cells</subject><subject>Platinum</subject><subject>Solar cells</subject><subject>Water splitting</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1LwzAYxoMoOKcX70KOInTmo22a4xibChMPflxLmiZrRtbUJHX431utH1fhheeB34_38gBwjtEMI8qvZaYUIpRTcQAmmGVpkjGUH_70nJNjcBLCFqGcIMYnwN33Nppt38poXAsfDewaF50UsXG1CnBvYgNj34rKqhG9ORvFZkDaux0kMwRfYHRDKYainYfWbJoITVv3UtVwL6LyMHTWxGjazSk40sIGdfadU_C8Wj4tbpP1w83dYr5OJOUkJlimVNOKFAJTgjmrUkVqLgipq5SIrNJiOELTQpNa86rORCEZGkAukVIZp1NwOf7tvHvtVYjlzgSprBWtcn0ocYEKlCOW_0NlBeMs5ZgN6tWoSu9C8EqXnTc74d9LjMrPAcpFtlx-DTAf5ItR9kH-en8D0Q--W4MT</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Urbain, Félix</creator><creator>Smirnov, Vladimir</creator><creator>Becker, Jan-Philipp</creator><creator>Lambertz, Andreas</creator><creator>Yang, Florent</creator><creator>Ziegler, Jürgen</creator><creator>Kaiser, Bernhard</creator><creator>Jaegermann, Wolfram</creator><creator>Rau, Uwe</creator><creator>Finger, Friedhelm</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5423-6818</orcidid></search><sort><creationdate>20160101</creationdate><title>Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting</title><author>Urbain, Félix ; Smirnov, Vladimir ; Becker, Jan-Philipp ; Lambertz, Andreas ; Yang, Florent ; Ziegler, Jürgen ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Rau, Uwe ; Finger, Friedhelm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1c43f3b28a132197b4e2d9a22db42a5bfabfa2348f2df9bd5a8c70a5b6c0ee593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Devices</topic><topic>Electrolytic cells</topic><topic>Photocathodes</topic><topic>Photovoltages</topic><topic>Photovoltaic cells</topic><topic>Platinum</topic><topic>Solar cells</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urbain, Félix</creatorcontrib><creatorcontrib>Smirnov, Vladimir</creatorcontrib><creatorcontrib>Becker, Jan-Philipp</creatorcontrib><creatorcontrib>Lambertz, Andreas</creatorcontrib><creatorcontrib>Yang, Florent</creatorcontrib><creatorcontrib>Ziegler, Jürgen</creatorcontrib><creatorcontrib>Kaiser, Bernhard</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Rau, Uwe</creatorcontrib><creatorcontrib>Finger, Friedhelm</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urbain, Félix</au><au>Smirnov, Vladimir</au><au>Becker, Jan-Philipp</au><au>Lambertz, Andreas</au><au>Yang, Florent</au><au>Ziegler, Jürgen</au><au>Kaiser, Bernhard</au><au>Jaegermann, Wolfram</au><au>Rau, Uwe</au><au>Finger, Friedhelm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting</atitle><jtitle>Energy & environmental science</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>9</volume><issue>1</issue><spage>145</spage><epage>154</epage><pages>145-154</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>We report on the development of high performance triple and quadruple junction solar cells made of amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H) for the application as photocathodes in integrated photovoltaic-electrosynthetic devices for solar water splitting. We show that the electronic properties of the individual sub cells can be adjusted such that the photovoltages of multijunction devices cover a wide range of photovoltages from 2.0 V up to 2.8 V with photovoltaic efficiencies of 13.6% for triple and 13.2% for quadruple cells. The ability to provide self-contained solar water splitting is demonstrated in a PV-biased electrosynthetic (PV-EC) cell. With the developed triple junction photocathode in the a-Si:H/a-Si:H/μc-Si:H configuration we achieved an operation photocurrent density of 7.7 mA cm
−2
at 0 V applied bias using a Ag/Pt layer stack as photocathode/electrolyte contact and ruthenium oxide as counter electrode. Assuming a faradaic efficiency of 100%, this corresponds to a solar-to-hydrogen efficiency of 9.5%. The quadruple junction device provides enough excess voltage to substitute precious metal catalyst, such as Pt by more earth-abundant materials, such as Ni without impairing the solar-to-hydrogen efficiency.
Bias-free solar water splitting is demonstrated using thin film silicon based triple and quadruple junction solar cells with solar-to-hydrogen efficiencies up to 9.5%.</abstract><doi>10.1039/c5ee02393a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5423-6818</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2016-01, Vol.9 (1), p.145-154 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808060769 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Devices Electrolytic cells Photocathodes Photovoltages Photovoltaic cells Platinum Solar cells Water splitting |
title | Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multijunction%20Si%20photocathodes%20with%20tunable%20photovoltages%20from%202.0%20V%20to%202.8%20V%20for%20light%20induced%20water%20splitting&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Urbain,%20F%C3%A9lix&rft.date=2016-01-01&rft.volume=9&rft.issue=1&rft.spage=145&rft.epage=154&rft.pages=145-154&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c5ee02393a&rft_dat=%3Cproquest_rsc_p%3E1787974917%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787974917&rft_id=info:pmid/&rfr_iscdi=true |