Abundant Porewater Mn(III) Is a Major Component of the Sedimentary Redox System

Soluble manganese(III) [Mn(III)] can potentially serve as both oxidant and reductant in one-electron-transfer reactions with other redox species. In near-surface sediment porewater, it is often overlooked as a major component of Mn cycling. Applying a spectrophotometric kinetic method to hemipelagic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2013-08, Vol.341 (6148), p.875-878
Hauptverfasser: Madison, Andrew S., Tebo, Bradley M., Mucci, Alfonso, Sundby, Bjørn, Luther, George W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 878
container_issue 6148
container_start_page 875
container_title Science (American Association for the Advancement of Science)
container_volume 341
creator Madison, Andrew S.
Tebo, Bradley M.
Mucci, Alfonso
Sundby, Bjørn
Luther, George W.
description Soluble manganese(III) [Mn(III)] can potentially serve as both oxidant and reductant in one-electron-transfer reactions with other redox species. In near-surface sediment porewater, it is often overlooked as a major component of Mn cycling. Applying a spectrophotometric kinetic method to hemipelagic sediments from the Laurentian Trough (Quebec, Canada), we found that soluble Mn(III), likely stabilized by organic or inorganic ligands, accounts for up to 90% of the total dissolved Mn pool. Vertical profiles of dissolved oxygen and dissolved and solid Mn suggest that soluble Mn(III) is primarily produced via oxidation of Mn(II) diffusing upwards from anoxic sediments with lesser contributions from biotic and abiotic reductive dissolution of MnO 2 . The conceptual model of the sedimentary redox cycle should therefore explicitly include dissolved Mn(III).
doi_str_mv 10.1126/science.1241396
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808060726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23491254</jstor_id><sourcerecordid>23491254</sourcerecordid><originalsourceid>FETCH-LOGICAL-a469t-680d0278dffab90195d02b96121d2cb17a5cf5ea1937cc2d8cd7bc5fd6b6d8f33</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgipvTsycl4GUeuuVHmzTHMfxR2Jg4PZc0SXFjbWbSovvvja6KePH0eLxPHrx8ATjHaIQxYWOvVqZWZoRJjKlgB6CPkUgiQRA9BH2EKItSxJMeOPF-jVCYCXoMeoQKjphgfbCYFG2tZd3AB-vMm2yMg_N6mGXZNcw8lHAu19bBqa22tjaB2RI2LwYujV5VoZduBx-Ntu9wufONqU7BUSk33px1dQCeb2-epvfRbHGXTSezSMZMNBFLkUaEp7osZSEQFkloC8EwwZqoAnOZqDIxEgvKlSI6VZoXKik1K5hOS0oHYLjfu3X2tTW-yauVV2azkbWxrc9xilLEECfsfxoTzmNCOQ_06g9d29bV4ZAvhRlLcRLUeK-Us947U-Zbt6rCT-QY5Z-x5F0seRdLeHHZ7W2Lyugf_51DABd7sPaNdb_mscAkiekH1QSRZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427166815</pqid></control><display><type>article</type><title>Abundant Porewater Mn(III) Is a Major Component of the Sedimentary Redox System</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Madison, Andrew S. ; Tebo, Bradley M. ; Mucci, Alfonso ; Sundby, Bjørn ; Luther, George W.</creator><creatorcontrib>Madison, Andrew S. ; Tebo, Bradley M. ; Mucci, Alfonso ; Sundby, Bjørn ; Luther, George W.</creatorcontrib><description>Soluble manganese(III) [Mn(III)] can potentially serve as both oxidant and reductant in one-electron-transfer reactions with other redox species. In near-surface sediment porewater, it is often overlooked as a major component of Mn cycling. Applying a spectrophotometric kinetic method to hemipelagic sediments from the Laurentian Trough (Quebec, Canada), we found that soluble Mn(III), likely stabilized by organic or inorganic ligands, accounts for up to 90% of the total dissolved Mn pool. Vertical profiles of dissolved oxygen and dissolved and solid Mn suggest that soluble Mn(III) is primarily produced via oxidation of Mn(II) diffusing upwards from anoxic sediments with lesser contributions from biotic and abiotic reductive dissolution of MnO 2 . The conceptual model of the sedimentary redox cycle should therefore explicitly include dissolved Mn(III).</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1241396</identifier><identifier>PMID: 23970696</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Aluminum ; Biogeochemistry ; Chemical reactions ; Chemicals ; Cycles ; Electrons ; Estuarine environments ; Iron ; Ligands ; Manganese ; Oxidation ; Oxidation-reduction reactions ; Oxides ; Oxygen ; Sedimentary geology ; Sediments ; Species ; Valence</subject><ispartof>Science (American Association for the Advancement of Science), 2013-08, Vol.341 (6148), p.875-878</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a469t-680d0278dffab90195d02b96121d2cb17a5cf5ea1937cc2d8cd7bc5fd6b6d8f33</citedby><cites>FETCH-LOGICAL-a469t-680d0278dffab90195d02b96121d2cb17a5cf5ea1937cc2d8cd7bc5fd6b6d8f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23491254$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23491254$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23970696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Madison, Andrew S.</creatorcontrib><creatorcontrib>Tebo, Bradley M.</creatorcontrib><creatorcontrib>Mucci, Alfonso</creatorcontrib><creatorcontrib>Sundby, Bjørn</creatorcontrib><creatorcontrib>Luther, George W.</creatorcontrib><title>Abundant Porewater Mn(III) Is a Major Component of the Sedimentary Redox System</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Soluble manganese(III) [Mn(III)] can potentially serve as both oxidant and reductant in one-electron-transfer reactions with other redox species. In near-surface sediment porewater, it is often overlooked as a major component of Mn cycling. Applying a spectrophotometric kinetic method to hemipelagic sediments from the Laurentian Trough (Quebec, Canada), we found that soluble Mn(III), likely stabilized by organic or inorganic ligands, accounts for up to 90% of the total dissolved Mn pool. Vertical profiles of dissolved oxygen and dissolved and solid Mn suggest that soluble Mn(III) is primarily produced via oxidation of Mn(II) diffusing upwards from anoxic sediments with lesser contributions from biotic and abiotic reductive dissolution of MnO 2 . The conceptual model of the sedimentary redox cycle should therefore explicitly include dissolved Mn(III).</description><subject>Aluminum</subject><subject>Biogeochemistry</subject><subject>Chemical reactions</subject><subject>Chemicals</subject><subject>Cycles</subject><subject>Electrons</subject><subject>Estuarine environments</subject><subject>Iron</subject><subject>Ligands</subject><subject>Manganese</subject><subject>Oxidation</subject><subject>Oxidation-reduction reactions</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Sedimentary geology</subject><subject>Sediments</subject><subject>Species</subject><subject>Valence</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LwzAUB_AgipvTsycl4GUeuuVHmzTHMfxR2Jg4PZc0SXFjbWbSovvvja6KePH0eLxPHrx8ATjHaIQxYWOvVqZWZoRJjKlgB6CPkUgiQRA9BH2EKItSxJMeOPF-jVCYCXoMeoQKjphgfbCYFG2tZd3AB-vMm2yMg_N6mGXZNcw8lHAu19bBqa22tjaB2RI2LwYujV5VoZduBx-Ntu9wufONqU7BUSk33px1dQCeb2-epvfRbHGXTSezSMZMNBFLkUaEp7osZSEQFkloC8EwwZqoAnOZqDIxEgvKlSI6VZoXKik1K5hOS0oHYLjfu3X2tTW-yauVV2azkbWxrc9xilLEECfsfxoTzmNCOQ_06g9d29bV4ZAvhRlLcRLUeK-Us947U-Zbt6rCT-QY5Z-x5F0seRdLeHHZ7W2Lyugf_51DABd7sPaNdb_mscAkiekH1QSRZQ</recordid><startdate>20130823</startdate><enddate>20130823</enddate><creator>Madison, Andrew S.</creator><creator>Tebo, Bradley M.</creator><creator>Mucci, Alfonso</creator><creator>Sundby, Bjørn</creator><creator>Luther, George W.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130823</creationdate><title>Abundant Porewater Mn(III) Is a Major Component of the Sedimentary Redox System</title><author>Madison, Andrew S. ; Tebo, Bradley M. ; Mucci, Alfonso ; Sundby, Bjørn ; Luther, George W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a469t-680d0278dffab90195d02b96121d2cb17a5cf5ea1937cc2d8cd7bc5fd6b6d8f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum</topic><topic>Biogeochemistry</topic><topic>Chemical reactions</topic><topic>Chemicals</topic><topic>Cycles</topic><topic>Electrons</topic><topic>Estuarine environments</topic><topic>Iron</topic><topic>Ligands</topic><topic>Manganese</topic><topic>Oxidation</topic><topic>Oxidation-reduction reactions</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Sedimentary geology</topic><topic>Sediments</topic><topic>Species</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madison, Andrew S.</creatorcontrib><creatorcontrib>Tebo, Bradley M.</creatorcontrib><creatorcontrib>Mucci, Alfonso</creatorcontrib><creatorcontrib>Sundby, Bjørn</creatorcontrib><creatorcontrib>Luther, George W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madison, Andrew S.</au><au>Tebo, Bradley M.</au><au>Mucci, Alfonso</au><au>Sundby, Bjørn</au><au>Luther, George W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abundant Porewater Mn(III) Is a Major Component of the Sedimentary Redox System</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-08-23</date><risdate>2013</risdate><volume>341</volume><issue>6148</issue><spage>875</spage><epage>878</epage><pages>875-878</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Soluble manganese(III) [Mn(III)] can potentially serve as both oxidant and reductant in one-electron-transfer reactions with other redox species. In near-surface sediment porewater, it is often overlooked as a major component of Mn cycling. Applying a spectrophotometric kinetic method to hemipelagic sediments from the Laurentian Trough (Quebec, Canada), we found that soluble Mn(III), likely stabilized by organic or inorganic ligands, accounts for up to 90% of the total dissolved Mn pool. Vertical profiles of dissolved oxygen and dissolved and solid Mn suggest that soluble Mn(III) is primarily produced via oxidation of Mn(II) diffusing upwards from anoxic sediments with lesser contributions from biotic and abiotic reductive dissolution of MnO 2 . The conceptual model of the sedimentary redox cycle should therefore explicitly include dissolved Mn(III).</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23970696</pmid><doi>10.1126/science.1241396</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2013-08, Vol.341 (6148), p.875-878
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1808060726
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Aluminum
Biogeochemistry
Chemical reactions
Chemicals
Cycles
Electrons
Estuarine environments
Iron
Ligands
Manganese
Oxidation
Oxidation-reduction reactions
Oxides
Oxygen
Sedimentary geology
Sediments
Species
Valence
title Abundant Porewater Mn(III) Is a Major Component of the Sedimentary Redox System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abundant%20Porewater%20Mn(III)%20Is%20a%20Major%20Component%20of%20the%20Sedimentary%20Redox%20System&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Madison,%20Andrew%20S.&rft.date=2013-08-23&rft.volume=341&rft.issue=6148&rft.spage=875&rft.epage=878&rft.pages=875-878&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1241396&rft_dat=%3Cjstor_proqu%3E23491254%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1427166815&rft_id=info:pmid/23970696&rft_jstor_id=23491254&rfr_iscdi=true