Further Experiments and Investigations for Discharge Coefficient of PTC 6 Flow Nozzle in a Wide Range of Reynolds Number

The discharge coefficients of the flow nozzles based on ASME PTC 6 are measured in a wide range of Reynolds number from Red = 5.8 × 104 to Red = 1.4 × 107, and the equations of the discharge coefficients are developed for the laminar, the transitional, and the turbulent flow ranges. The equation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2016-04, Vol.138 (4)
Hauptverfasser: Furuichi, Noriyuki, Terao, Yoshiya, Nakao, Shinichi, Fujita, Keiji, Shibuya, Kazuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of engineering for gas turbines and power
container_volume 138
creator Furuichi, Noriyuki
Terao, Yoshiya
Nakao, Shinichi
Fujita, Keiji
Shibuya, Kazuo
description The discharge coefficients of the flow nozzles based on ASME PTC 6 are measured in a wide range of Reynolds number from Red = 5.8 × 104 to Red = 1.4 × 107, and the equations of the discharge coefficients are developed for the laminar, the transitional, and the turbulent flow ranges. The equation of the discharge coefficient consists of a nominal discharge coefficient and the tap effect. The nominal discharge coefficient is the discharge coefficient without tap, which is experimentally determined from the discharge coefficients measured for different tap diameters. The tap effects are correctly obtained by subtracting the nominal discharge coefficient from the discharge coefficient measured. The deviation of the present experimental results from the equations developed is from −0.06% to 0.04% for 3.0 × 106 
doi_str_mv 10.1115/1.4031310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808060697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808060697</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-38b25cd8d0614463b12126681be4a34618883c8760150c718f4fb7ddc1226f13</originalsourceid><addsrcrecordid>eNqF0TFPwzAQBWALgUQpDMwsHmEI-GLHdkZUWkCqAFWVGC0nsSEotYudQOmvx6jdmW757qR3D6FzINcAUNzANSMUKJADNIIil5ksoTxEIyJYnjFRFsfoJMYPQoBSJkZoMxtC_24Cnm7WJrQr4_qItWvwo_sysW_fdN96F7H1Ad-1sX7X4c3giTfWtnWbNPYWvywnmONZ57_xk99uO4NbhzV-bRuDF9qlhYQW5sf5ron4aVhVJpyiI6u7aM72c4yWs-ly8pDNn-8fJ7fzTFMo-ozKKi_qRjaEA2OcVpBDzrmEyjBNGQcpJa2l4AQKUguQltlKNE0Nec4t0DG63J1dB_85pERqlVKYrtPO-CEqkEQSTngp_qeiJKUoQOSJXu1oHXyMwVi1Tr_T4UcBUX89KFD7HpK92FkdV0Z9-CG4lFdRySQp6S_trYEr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790975172</pqid></control><display><type>article</type><title>Further Experiments and Investigations for Discharge Coefficient of PTC 6 Flow Nozzle in a Wide Range of Reynolds Number</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Furuichi, Noriyuki ; Terao, Yoshiya ; Nakao, Shinichi ; Fujita, Keiji ; Shibuya, Kazuo</creator><creatorcontrib>Furuichi, Noriyuki ; Terao, Yoshiya ; Nakao, Shinichi ; Fujita, Keiji ; Shibuya, Kazuo</creatorcontrib><description>The discharge coefficients of the flow nozzles based on ASME PTC 6 are measured in a wide range of Reynolds number from Red = 5.8 × 104 to Red = 1.4 × 107, and the equations of the discharge coefficients are developed for the laminar, the transitional, and the turbulent flow ranges. The equation of the discharge coefficient consists of a nominal discharge coefficient and the tap effect. The nominal discharge coefficient is the discharge coefficient without tap, which is experimentally determined from the discharge coefficients measured for different tap diameters. The tap effects are correctly obtained by subtracting the nominal discharge coefficient from the discharge coefficient measured. The deviation of the present experimental results from the equations developed is from −0.06% to 0.04% for 3.0 × 106 &lt; Red &lt; 1.4 × 107 and from −0.11% to 0.16% for overall Reynolds number range examined. The developed equations are expected to be capable of estimating the discharge coefficient of the throat tap nozzle defined in PTC 6 with a high accuracy and contribute for the high accurate evaluation of steam turbines in power plants.</description><identifier>ISSN: 0742-4795</identifier><identifier>EISSN: 1528-8919</identifier><identifier>DOI: 10.1115/1.4031310</identifier><language>eng</language><publisher>ASME</publisher><subject>Discharge coefficients ; Fluid dynamics ; Fluid flow ; Gas Turbines: Controls, Diagnostics, and Instrumentation ; Mathematical analysis ; Nozzles ; Reynolds number ; Turbulence ; Turbulent flow</subject><ispartof>Journal of engineering for gas turbines and power, 2016-04, Vol.138 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-38b25cd8d0614463b12126681be4a34618883c8760150c718f4fb7ddc1226f13</citedby><cites>FETCH-LOGICAL-a315t-38b25cd8d0614463b12126681be4a34618883c8760150c718f4fb7ddc1226f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Furuichi, Noriyuki</creatorcontrib><creatorcontrib>Terao, Yoshiya</creatorcontrib><creatorcontrib>Nakao, Shinichi</creatorcontrib><creatorcontrib>Fujita, Keiji</creatorcontrib><creatorcontrib>Shibuya, Kazuo</creatorcontrib><title>Further Experiments and Investigations for Discharge Coefficient of PTC 6 Flow Nozzle in a Wide Range of Reynolds Number</title><title>Journal of engineering for gas turbines and power</title><addtitle>J. Eng. Gas Turbines Power</addtitle><description>The discharge coefficients of the flow nozzles based on ASME PTC 6 are measured in a wide range of Reynolds number from Red = 5.8 × 104 to Red = 1.4 × 107, and the equations of the discharge coefficients are developed for the laminar, the transitional, and the turbulent flow ranges. The equation of the discharge coefficient consists of a nominal discharge coefficient and the tap effect. The nominal discharge coefficient is the discharge coefficient without tap, which is experimentally determined from the discharge coefficients measured for different tap diameters. The tap effects are correctly obtained by subtracting the nominal discharge coefficient from the discharge coefficient measured. The deviation of the present experimental results from the equations developed is from −0.06% to 0.04% for 3.0 × 106 &lt; Red &lt; 1.4 × 107 and from −0.11% to 0.16% for overall Reynolds number range examined. The developed equations are expected to be capable of estimating the discharge coefficient of the throat tap nozzle defined in PTC 6 with a high accuracy and contribute for the high accurate evaluation of steam turbines in power plants.</description><subject>Discharge coefficients</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Gas Turbines: Controls, Diagnostics, and Instrumentation</subject><subject>Mathematical analysis</subject><subject>Nozzles</subject><subject>Reynolds number</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0742-4795</issn><issn>1528-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0TFPwzAQBWALgUQpDMwsHmEI-GLHdkZUWkCqAFWVGC0nsSEotYudQOmvx6jdmW757qR3D6FzINcAUNzANSMUKJADNIIil5ksoTxEIyJYnjFRFsfoJMYPQoBSJkZoMxtC_24Cnm7WJrQr4_qItWvwo_sysW_fdN96F7H1Ad-1sX7X4c3giTfWtnWbNPYWvywnmONZ57_xk99uO4NbhzV-bRuDF9qlhYQW5sf5ron4aVhVJpyiI6u7aM72c4yWs-ly8pDNn-8fJ7fzTFMo-ozKKi_qRjaEA2OcVpBDzrmEyjBNGQcpJa2l4AQKUguQltlKNE0Nec4t0DG63J1dB_85pERqlVKYrtPO-CEqkEQSTngp_qeiJKUoQOSJXu1oHXyMwVi1Tr_T4UcBUX89KFD7HpK92FkdV0Z9-CG4lFdRySQp6S_trYEr</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Furuichi, Noriyuki</creator><creator>Terao, Yoshiya</creator><creator>Nakao, Shinichi</creator><creator>Fujita, Keiji</creator><creator>Shibuya, Kazuo</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160401</creationdate><title>Further Experiments and Investigations for Discharge Coefficient of PTC 6 Flow Nozzle in a Wide Range of Reynolds Number</title><author>Furuichi, Noriyuki ; Terao, Yoshiya ; Nakao, Shinichi ; Fujita, Keiji ; Shibuya, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-38b25cd8d0614463b12126681be4a34618883c8760150c718f4fb7ddc1226f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Discharge coefficients</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Gas Turbines: Controls, Diagnostics, and Instrumentation</topic><topic>Mathematical analysis</topic><topic>Nozzles</topic><topic>Reynolds number</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furuichi, Noriyuki</creatorcontrib><creatorcontrib>Terao, Yoshiya</creatorcontrib><creatorcontrib>Nakao, Shinichi</creatorcontrib><creatorcontrib>Fujita, Keiji</creatorcontrib><creatorcontrib>Shibuya, Kazuo</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of engineering for gas turbines and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furuichi, Noriyuki</au><au>Terao, Yoshiya</au><au>Nakao, Shinichi</au><au>Fujita, Keiji</au><au>Shibuya, Kazuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Further Experiments and Investigations for Discharge Coefficient of PTC 6 Flow Nozzle in a Wide Range of Reynolds Number</atitle><jtitle>Journal of engineering for gas turbines and power</jtitle><stitle>J. Eng. Gas Turbines Power</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>138</volume><issue>4</issue><issn>0742-4795</issn><eissn>1528-8919</eissn><abstract>The discharge coefficients of the flow nozzles based on ASME PTC 6 are measured in a wide range of Reynolds number from Red = 5.8 × 104 to Red = 1.4 × 107, and the equations of the discharge coefficients are developed for the laminar, the transitional, and the turbulent flow ranges. The equation of the discharge coefficient consists of a nominal discharge coefficient and the tap effect. The nominal discharge coefficient is the discharge coefficient without tap, which is experimentally determined from the discharge coefficients measured for different tap diameters. The tap effects are correctly obtained by subtracting the nominal discharge coefficient from the discharge coefficient measured. The deviation of the present experimental results from the equations developed is from −0.06% to 0.04% for 3.0 × 106 &lt; Red &lt; 1.4 × 107 and from −0.11% to 0.16% for overall Reynolds number range examined. The developed equations are expected to be capable of estimating the discharge coefficient of the throat tap nozzle defined in PTC 6 with a high accuracy and contribute for the high accurate evaluation of steam turbines in power plants.</abstract><pub>ASME</pub><doi>10.1115/1.4031310</doi></addata></record>
fulltext fulltext
identifier ISSN: 0742-4795
ispartof Journal of engineering for gas turbines and power, 2016-04, Vol.138 (4)
issn 0742-4795
1528-8919
language eng
recordid cdi_proquest_miscellaneous_1808060697
source ASME Transactions Journals (Current); Alma/SFX Local Collection
subjects Discharge coefficients
Fluid dynamics
Fluid flow
Gas Turbines: Controls, Diagnostics, and Instrumentation
Mathematical analysis
Nozzles
Reynolds number
Turbulence
Turbulent flow
title Further Experiments and Investigations for Discharge Coefficient of PTC 6 Flow Nozzle in a Wide Range of Reynolds Number
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Further%20Experiments%20and%20Investigations%20for%20Discharge%20Coefficient%20of%20PTC%206%20Flow%20Nozzle%20in%20a%20Wide%20Range%20of%20Reynolds%20Number&rft.jtitle=Journal%20of%20engineering%20for%20gas%20turbines%20and%20power&rft.au=Furuichi,%20Noriyuki&rft.date=2016-04-01&rft.volume=138&rft.issue=4&rft.issn=0742-4795&rft.eissn=1528-8919&rft_id=info:doi/10.1115/1.4031310&rft_dat=%3Cproquest_cross%3E1808060697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790975172&rft_id=info:pmid/&rfr_iscdi=true