Multisensory Control of Hippocampal Spatiotemporal Selectivity
The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2013-06, Vol.340 (6138), p.1342-1346 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1346 |
---|---|
container_issue | 6138 |
container_start_page | 1342 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 340 |
creator | Ravassard, Pascal Kees, Ashley Willers, Bernard Ho, David Aharoni, Daniel Cushman, Jesse Aghajan, Zahra M. Mehta, Mayank R. |
description | The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm. |
doi_str_mv | 10.1126/science.1232655 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808060166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41988701</jstor_id><sourcerecordid>41988701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-1d33d09299b52a3a6cb3b27af9578084c6d96cddb0063e9db38bc7fafd804f1b3</originalsourceid><addsrcrecordid>eNqF0UFr2zAYBmAxWpYs3XmnlsAo9OLkk2TJ0qUwQrcMUnrodjayLIOCbbmSPMi_r9J4GezSkxDfo1cSL0JfMKwwJnwdtDW9NitMKOGMfUBzDJJlkgC9QHMAyjMBBZuhTyHsAdJM0o9oRijPMXA6R_ePYxttMH1w_rDcuD561y5ds9zaYXBadYNql8-DitZF0w3OH7emNTraPzYertBlo9pgPk_rAv3-_vBrs812Tz9-br7tMs0YxAzXlNYgiZQVI4oqritakUI1khUCRK55Lbmu6wrSo4ysKyoqXTSqqQXkDa7oAt2dcgfvXkYTYtnZoE3bqt64MZQ4pQAHzPn7lHPIsSA4f59SXgjBsCwS_fof3bvR9-nPb4pRkYtj4PqktHcheNOUg7ed8ocSQ3ksrJwKK6fC0ombKXesOlOf_d-GEridgApatY1Xvbbhn0tXJyaSuz65fYjOn-c5lkIUgOkrmBansQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367538484</pqid></control><display><type>article</type><title>Multisensory Control of Hippocampal Spatiotemporal Selectivity</title><source>MEDLINE</source><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Ravassard, Pascal ; Kees, Ashley ; Willers, Bernard ; Ho, David ; Aharoni, Daniel ; Cushman, Jesse ; Aghajan, Zahra M. ; Mehta, Mayank R.</creator><creatorcontrib>Ravassard, Pascal ; Kees, Ashley ; Willers, Bernard ; Ho, David ; Aharoni, Daniel ; Cushman, Jesse ; Aghajan, Zahra M. ; Mehta, Mayank R.</creatorcontrib><description>The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1232655</identifier><identifier>PMID: 23641063</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Animal cognition ; Animals ; Behavioral neuroscience ; Biological and medical sciences ; Brain ; Brain Mapping ; Coding ; Cognitive Mapping ; Computer Simulation ; Cues ; Fundamental and applied biological sciences. Psychology ; Hippocampus ; Hippocampus - physiology ; Male ; Motion ; Neurons ; Precession ; Rats ; Rats, Inbred LEC ; Running ; Running speed ; Sensory perception ; Smell ; Space Perception ; Spatial Ability ; Spatial Behavior ; Spatial data ; Surface layer ; Texture ; Theta Rhythm ; Time Perception ; User-Computer Interface ; Vertebrates: nervous system and sense organs ; Virtual reality ; Visual</subject><ispartof>Science (American Association for the Advancement of Science), 2013-06, Vol.340 (6138), p.1342-1346</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-1d33d09299b52a3a6cb3b27af9578084c6d96cddb0063e9db38bc7fafd804f1b3</citedby><cites>FETCH-LOGICAL-c550t-1d33d09299b52a3a6cb3b27af9578084c6d96cddb0063e9db38bc7fafd804f1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41988701$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41988701$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2882,2883,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27530638$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23641063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravassard, Pascal</creatorcontrib><creatorcontrib>Kees, Ashley</creatorcontrib><creatorcontrib>Willers, Bernard</creatorcontrib><creatorcontrib>Ho, David</creatorcontrib><creatorcontrib>Aharoni, Daniel</creatorcontrib><creatorcontrib>Cushman, Jesse</creatorcontrib><creatorcontrib>Aghajan, Zahra M.</creatorcontrib><creatorcontrib>Mehta, Mayank R.</creatorcontrib><title>Multisensory Control of Hippocampal Spatiotemporal Selectivity</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.</description><subject>Animal cognition</subject><subject>Animals</subject><subject>Behavioral neuroscience</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Coding</subject><subject>Cognitive Mapping</subject><subject>Computer Simulation</subject><subject>Cues</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hippocampus</subject><subject>Hippocampus - physiology</subject><subject>Male</subject><subject>Motion</subject><subject>Neurons</subject><subject>Precession</subject><subject>Rats</subject><subject>Rats, Inbred LEC</subject><subject>Running</subject><subject>Running speed</subject><subject>Sensory perception</subject><subject>Smell</subject><subject>Space Perception</subject><subject>Spatial Ability</subject><subject>Spatial Behavior</subject><subject>Spatial data</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Theta Rhythm</subject><subject>Time Perception</subject><subject>User-Computer Interface</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Virtual reality</subject><subject>Visual</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFr2zAYBmAxWpYs3XmnlsAo9OLkk2TJ0qUwQrcMUnrodjayLIOCbbmSPMi_r9J4GezSkxDfo1cSL0JfMKwwJnwdtDW9NitMKOGMfUBzDJJlkgC9QHMAyjMBBZuhTyHsAdJM0o9oRijPMXA6R_ePYxttMH1w_rDcuD561y5ds9zaYXBadYNql8-DitZF0w3OH7emNTraPzYertBlo9pgPk_rAv3-_vBrs812Tz9-br7tMs0YxAzXlNYgiZQVI4oqritakUI1khUCRK55Lbmu6wrSo4ysKyoqXTSqqQXkDa7oAt2dcgfvXkYTYtnZoE3bqt64MZQ4pQAHzPn7lHPIsSA4f59SXgjBsCwS_fof3bvR9-nPb4pRkYtj4PqktHcheNOUg7ed8ocSQ3ksrJwKK6fC0ombKXesOlOf_d-GEridgApatY1Xvbbhn0tXJyaSuz65fYjOn-c5lkIUgOkrmBansQ</recordid><startdate>20130614</startdate><enddate>20130614</enddate><creator>Ravassard, Pascal</creator><creator>Kees, Ashley</creator><creator>Willers, Bernard</creator><creator>Ho, David</creator><creator>Aharoni, Daniel</creator><creator>Cushman, Jesse</creator><creator>Aghajan, Zahra M.</creator><creator>Mehta, Mayank R.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130614</creationdate><title>Multisensory Control of Hippocampal Spatiotemporal Selectivity</title><author>Ravassard, Pascal ; Kees, Ashley ; Willers, Bernard ; Ho, David ; Aharoni, Daniel ; Cushman, Jesse ; Aghajan, Zahra M. ; Mehta, Mayank R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-1d33d09299b52a3a6cb3b27af9578084c6d96cddb0063e9db38bc7fafd804f1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal cognition</topic><topic>Animals</topic><topic>Behavioral neuroscience</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Coding</topic><topic>Cognitive Mapping</topic><topic>Computer Simulation</topic><topic>Cues</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hippocampus</topic><topic>Hippocampus - physiology</topic><topic>Male</topic><topic>Motion</topic><topic>Neurons</topic><topic>Precession</topic><topic>Rats</topic><topic>Rats, Inbred LEC</topic><topic>Running</topic><topic>Running speed</topic><topic>Sensory perception</topic><topic>Smell</topic><topic>Space Perception</topic><topic>Spatial Ability</topic><topic>Spatial Behavior</topic><topic>Spatial data</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Theta Rhythm</topic><topic>Time Perception</topic><topic>User-Computer Interface</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Virtual reality</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravassard, Pascal</creatorcontrib><creatorcontrib>Kees, Ashley</creatorcontrib><creatorcontrib>Willers, Bernard</creatorcontrib><creatorcontrib>Ho, David</creatorcontrib><creatorcontrib>Aharoni, Daniel</creatorcontrib><creatorcontrib>Cushman, Jesse</creatorcontrib><creatorcontrib>Aghajan, Zahra M.</creatorcontrib><creatorcontrib>Mehta, Mayank R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravassard, Pascal</au><au>Kees, Ashley</au><au>Willers, Bernard</au><au>Ho, David</au><au>Aharoni, Daniel</au><au>Cushman, Jesse</au><au>Aghajan, Zahra M.</au><au>Mehta, Mayank R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisensory Control of Hippocampal Spatiotemporal Selectivity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-06-14</date><risdate>2013</risdate><volume>340</volume><issue>6138</issue><spage>1342</spage><epage>1346</epage><pages>1342-1346</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>23641063</pmid><doi>10.1126/science.1232655</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2013-06, Vol.340 (6138), p.1342-1346 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808060166 |
source | MEDLINE; Science Magazine; JSTOR Archive Collection A-Z Listing |
subjects | Animal cognition Animals Behavioral neuroscience Biological and medical sciences Brain Brain Mapping Coding Cognitive Mapping Computer Simulation Cues Fundamental and applied biological sciences. Psychology Hippocampus Hippocampus - physiology Male Motion Neurons Precession Rats Rats, Inbred LEC Running Running speed Sensory perception Smell Space Perception Spatial Ability Spatial Behavior Spatial data Surface layer Texture Theta Rhythm Time Perception User-Computer Interface Vertebrates: nervous system and sense organs Virtual reality Visual |
title | Multisensory Control of Hippocampal Spatiotemporal Selectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisensory%20Control%20of%20Hippocampal%20Spatiotemporal%20Selectivity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ravassard,%20Pascal&rft.date=2013-06-14&rft.volume=340&rft.issue=6138&rft.spage=1342&rft.epage=1346&rft.pages=1342-1346&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1232655&rft_dat=%3Cjstor_proqu%3E41988701%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1367538484&rft_id=info:pmid/23641063&rft_jstor_id=41988701&rfr_iscdi=true |