Multisensory Control of Hippocampal Spatiotemporal Selectivity

The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2013-06, Vol.340 (6138), p.1342-1346
Hauptverfasser: Ravassard, Pascal, Kees, Ashley, Willers, Bernard, Ho, David, Aharoni, Daniel, Cushman, Jesse, Aghajan, Zahra M., Mehta, Mayank R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1346
container_issue 6138
container_start_page 1342
container_title Science (American Association for the Advancement of Science)
container_volume 340
creator Ravassard, Pascal
Kees, Ashley
Willers, Bernard
Ho, David
Aharoni, Daniel
Cushman, Jesse
Aghajan, Zahra M.
Mehta, Mayank R.
description The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.
doi_str_mv 10.1126/science.1232655
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808060166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41988701</jstor_id><sourcerecordid>41988701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-1d33d09299b52a3a6cb3b27af9578084c6d96cddb0063e9db38bc7fafd804f1b3</originalsourceid><addsrcrecordid>eNqF0UFr2zAYBmAxWpYs3XmnlsAo9OLkk2TJ0qUwQrcMUnrodjayLIOCbbmSPMi_r9J4GezSkxDfo1cSL0JfMKwwJnwdtDW9NitMKOGMfUBzDJJlkgC9QHMAyjMBBZuhTyHsAdJM0o9oRijPMXA6R_ePYxttMH1w_rDcuD561y5ds9zaYXBadYNql8-DitZF0w3OH7emNTraPzYertBlo9pgPk_rAv3-_vBrs812Tz9-br7tMs0YxAzXlNYgiZQVI4oqritakUI1khUCRK55Lbmu6wrSo4ysKyoqXTSqqQXkDa7oAt2dcgfvXkYTYtnZoE3bqt64MZQ4pQAHzPn7lHPIsSA4f59SXgjBsCwS_fof3bvR9-nPb4pRkYtj4PqktHcheNOUg7ed8ocSQ3ksrJwKK6fC0ombKXesOlOf_d-GEridgApatY1Xvbbhn0tXJyaSuz65fYjOn-c5lkIUgOkrmBansQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367538484</pqid></control><display><type>article</type><title>Multisensory Control of Hippocampal Spatiotemporal Selectivity</title><source>MEDLINE</source><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Ravassard, Pascal ; Kees, Ashley ; Willers, Bernard ; Ho, David ; Aharoni, Daniel ; Cushman, Jesse ; Aghajan, Zahra M. ; Mehta, Mayank R.</creator><creatorcontrib>Ravassard, Pascal ; Kees, Ashley ; Willers, Bernard ; Ho, David ; Aharoni, Daniel ; Cushman, Jesse ; Aghajan, Zahra M. ; Mehta, Mayank R.</creatorcontrib><description>The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1232655</identifier><identifier>PMID: 23641063</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Animal cognition ; Animals ; Behavioral neuroscience ; Biological and medical sciences ; Brain ; Brain Mapping ; Coding ; Cognitive Mapping ; Computer Simulation ; Cues ; Fundamental and applied biological sciences. Psychology ; Hippocampus ; Hippocampus - physiology ; Male ; Motion ; Neurons ; Precession ; Rats ; Rats, Inbred LEC ; Running ; Running speed ; Sensory perception ; Smell ; Space Perception ; Spatial Ability ; Spatial Behavior ; Spatial data ; Surface layer ; Texture ; Theta Rhythm ; Time Perception ; User-Computer Interface ; Vertebrates: nervous system and sense organs ; Virtual reality ; Visual</subject><ispartof>Science (American Association for the Advancement of Science), 2013-06, Vol.340 (6138), p.1342-1346</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-1d33d09299b52a3a6cb3b27af9578084c6d96cddb0063e9db38bc7fafd804f1b3</citedby><cites>FETCH-LOGICAL-c550t-1d33d09299b52a3a6cb3b27af9578084c6d96cddb0063e9db38bc7fafd804f1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41988701$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41988701$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2882,2883,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27530638$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23641063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravassard, Pascal</creatorcontrib><creatorcontrib>Kees, Ashley</creatorcontrib><creatorcontrib>Willers, Bernard</creatorcontrib><creatorcontrib>Ho, David</creatorcontrib><creatorcontrib>Aharoni, Daniel</creatorcontrib><creatorcontrib>Cushman, Jesse</creatorcontrib><creatorcontrib>Aghajan, Zahra M.</creatorcontrib><creatorcontrib>Mehta, Mayank R.</creatorcontrib><title>Multisensory Control of Hippocampal Spatiotemporal Selectivity</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.</description><subject>Animal cognition</subject><subject>Animals</subject><subject>Behavioral neuroscience</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Coding</subject><subject>Cognitive Mapping</subject><subject>Computer Simulation</subject><subject>Cues</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hippocampus</subject><subject>Hippocampus - physiology</subject><subject>Male</subject><subject>Motion</subject><subject>Neurons</subject><subject>Precession</subject><subject>Rats</subject><subject>Rats, Inbred LEC</subject><subject>Running</subject><subject>Running speed</subject><subject>Sensory perception</subject><subject>Smell</subject><subject>Space Perception</subject><subject>Spatial Ability</subject><subject>Spatial Behavior</subject><subject>Spatial data</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Theta Rhythm</subject><subject>Time Perception</subject><subject>User-Computer Interface</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Virtual reality</subject><subject>Visual</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFr2zAYBmAxWpYs3XmnlsAo9OLkk2TJ0qUwQrcMUnrodjayLIOCbbmSPMi_r9J4GezSkxDfo1cSL0JfMKwwJnwdtDW9NitMKOGMfUBzDJJlkgC9QHMAyjMBBZuhTyHsAdJM0o9oRijPMXA6R_ePYxttMH1w_rDcuD561y5ds9zaYXBadYNql8-DitZF0w3OH7emNTraPzYertBlo9pgPk_rAv3-_vBrs812Tz9-br7tMs0YxAzXlNYgiZQVI4oqritakUI1khUCRK55Lbmu6wrSo4ysKyoqXTSqqQXkDa7oAt2dcgfvXkYTYtnZoE3bqt64MZQ4pQAHzPn7lHPIsSA4f59SXgjBsCwS_fof3bvR9-nPb4pRkYtj4PqktHcheNOUg7ed8ocSQ3ksrJwKK6fC0ombKXesOlOf_d-GEridgApatY1Xvbbhn0tXJyaSuz65fYjOn-c5lkIUgOkrmBansQ</recordid><startdate>20130614</startdate><enddate>20130614</enddate><creator>Ravassard, Pascal</creator><creator>Kees, Ashley</creator><creator>Willers, Bernard</creator><creator>Ho, David</creator><creator>Aharoni, Daniel</creator><creator>Cushman, Jesse</creator><creator>Aghajan, Zahra M.</creator><creator>Mehta, Mayank R.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130614</creationdate><title>Multisensory Control of Hippocampal Spatiotemporal Selectivity</title><author>Ravassard, Pascal ; Kees, Ashley ; Willers, Bernard ; Ho, David ; Aharoni, Daniel ; Cushman, Jesse ; Aghajan, Zahra M. ; Mehta, Mayank R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-1d33d09299b52a3a6cb3b27af9578084c6d96cddb0063e9db38bc7fafd804f1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal cognition</topic><topic>Animals</topic><topic>Behavioral neuroscience</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Coding</topic><topic>Cognitive Mapping</topic><topic>Computer Simulation</topic><topic>Cues</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hippocampus</topic><topic>Hippocampus - physiology</topic><topic>Male</topic><topic>Motion</topic><topic>Neurons</topic><topic>Precession</topic><topic>Rats</topic><topic>Rats, Inbred LEC</topic><topic>Running</topic><topic>Running speed</topic><topic>Sensory perception</topic><topic>Smell</topic><topic>Space Perception</topic><topic>Spatial Ability</topic><topic>Spatial Behavior</topic><topic>Spatial data</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Theta Rhythm</topic><topic>Time Perception</topic><topic>User-Computer Interface</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Virtual reality</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravassard, Pascal</creatorcontrib><creatorcontrib>Kees, Ashley</creatorcontrib><creatorcontrib>Willers, Bernard</creatorcontrib><creatorcontrib>Ho, David</creatorcontrib><creatorcontrib>Aharoni, Daniel</creatorcontrib><creatorcontrib>Cushman, Jesse</creatorcontrib><creatorcontrib>Aghajan, Zahra M.</creatorcontrib><creatorcontrib>Mehta, Mayank R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravassard, Pascal</au><au>Kees, Ashley</au><au>Willers, Bernard</au><au>Ho, David</au><au>Aharoni, Daniel</au><au>Cushman, Jesse</au><au>Aghajan, Zahra M.</au><au>Mehta, Mayank R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisensory Control of Hippocampal Spatiotemporal Selectivity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-06-14</date><risdate>2013</risdate><volume>340</volume><issue>6138</issue><spage>1342</spage><epage>1346</epage><pages>1342-1346</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>23641063</pmid><doi>10.1126/science.1232655</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2013-06, Vol.340 (6138), p.1342-1346
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1808060166
source MEDLINE; Science Magazine; JSTOR Archive Collection A-Z Listing
subjects Animal cognition
Animals
Behavioral neuroscience
Biological and medical sciences
Brain
Brain Mapping
Coding
Cognitive Mapping
Computer Simulation
Cues
Fundamental and applied biological sciences. Psychology
Hippocampus
Hippocampus - physiology
Male
Motion
Neurons
Precession
Rats
Rats, Inbred LEC
Running
Running speed
Sensory perception
Smell
Space Perception
Spatial Ability
Spatial Behavior
Spatial data
Surface layer
Texture
Theta Rhythm
Time Perception
User-Computer Interface
Vertebrates: nervous system and sense organs
Virtual reality
Visual
title Multisensory Control of Hippocampal Spatiotemporal Selectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisensory%20Control%20of%20Hippocampal%20Spatiotemporal%20Selectivity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ravassard,%20Pascal&rft.date=2013-06-14&rft.volume=340&rft.issue=6138&rft.spage=1342&rft.epage=1346&rft.pages=1342-1346&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1232655&rft_dat=%3Cjstor_proqu%3E41988701%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1367538484&rft_id=info:pmid/23641063&rft_jstor_id=41988701&rfr_iscdi=true