NONUNIFORM EXPONENTIAL BEHAVIOUR AND TOPOLOGICAL EQUIVALENCE
We show that any evolution family with a strong nonuniform exponential dichotomy can always be transformed by a topological equivalence to a canonical form that contracts and/or expands the same in all directions. We emphasize that strong nonuniform exponential dichotomies are ubiquitous in the cont...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2016-05, Vol.58 (2), p.279-291 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | 2 |
container_start_page | 279 |
container_title | Glasgow mathematical journal |
container_volume | 58 |
creator | BARREIRA, LUIS POPESCU, LIVIU HORIA VALLS, CLAUDIA |
description | We show that any evolution family with a strong nonuniform exponential dichotomy can always be transformed by a topological equivalence to a canonical form that contracts and/or expands the same in all directions. We emphasize that strong nonuniform exponential dichotomies are ubiquitous in the context of ergodic theory. The main novelty of our work is that we are able to control the asymptotic behaviour of the topological conjugacies at the origin and at infinity. |
doi_str_mv | 10.1017/S0017089515000191 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808059953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089515000191</cupid><sourcerecordid>4014468571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-4ae989f66cd6c381ea06db0bd3d0bffcd33f182c4d03967abcf2913b253069cc3</originalsourceid><addsrcrecordid>eNp1kE9PwjAYxhujiYh-AG9LvHiZvqVrtyZeJg5Zgh0iI9yarusMBBy2cPDbWwIHo_Hy_snze568eRG6xnCHAcf3b-ArJJxiCn7k-AR1cMR4SIHPT1FnL4d7_RxdOLf0K_FbBz2IQpQiHxSTlyCbjwuRiWmejoLHbJjO8qKcBKl4CqbFuBgVz3nfK9lrmc_SUSb62SU6a9TKmatj76JykE37w_DIhppEdBtGyvCEN4zpmmmSYKOA1RVUNamhahpdE9LgpKejGghnsap00-OYVD1KgHGtSRfdHnI3tv3cGbeV64XTZrVSH6bdOYkTSIByTolHb36hy3ZnP_x1EscxJ4wymngKHyhtW-esaeTGLtbKfkkMcv9P-eef3kOOHrWu7KJ-Nz-i_3V9A-bvcKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779365658</pqid></control><display><type>article</type><title>NONUNIFORM EXPONENTIAL BEHAVIOUR AND TOPOLOGICAL EQUIVALENCE</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge Journals</source><creator>BARREIRA, LUIS ; POPESCU, LIVIU HORIA ; VALLS, CLAUDIA</creator><creatorcontrib>BARREIRA, LUIS ; POPESCU, LIVIU HORIA ; VALLS, CLAUDIA</creatorcontrib><description>We show that any evolution family with a strong nonuniform exponential dichotomy can always be transformed by a topological equivalence to a canonical form that contracts and/or expands the same in all directions. We emphasize that strong nonuniform exponential dichotomies are ubiquitous in the context of ergodic theory. The main novelty of our work is that we are able to control the asymptotic behaviour of the topological conjugacies at the origin and at infinity.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089515000191</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymptotic properties ; Contracts ; Dichotomies ; Equivalence ; Evolution ; Mathematical analysis ; Nonuniform ; Topological manifolds ; Topology</subject><ispartof>Glasgow mathematical journal, 2016-05, Vol.58 (2), p.279-291</ispartof><rights>Copyright © Glasgow Mathematical Journal Trust 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c345t-4ae989f66cd6c381ea06db0bd3d0bffcd33f182c4d03967abcf2913b253069cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089515000191/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>BARREIRA, LUIS</creatorcontrib><creatorcontrib>POPESCU, LIVIU HORIA</creatorcontrib><creatorcontrib>VALLS, CLAUDIA</creatorcontrib><title>NONUNIFORM EXPONENTIAL BEHAVIOUR AND TOPOLOGICAL EQUIVALENCE</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>We show that any evolution family with a strong nonuniform exponential dichotomy can always be transformed by a topological equivalence to a canonical form that contracts and/or expands the same in all directions. We emphasize that strong nonuniform exponential dichotomies are ubiquitous in the context of ergodic theory. The main novelty of our work is that we are able to control the asymptotic behaviour of the topological conjugacies at the origin and at infinity.</description><subject>Asymptotic properties</subject><subject>Contracts</subject><subject>Dichotomies</subject><subject>Equivalence</subject><subject>Evolution</subject><subject>Mathematical analysis</subject><subject>Nonuniform</subject><subject>Topological manifolds</subject><subject>Topology</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9PwjAYxhujiYh-AG9LvHiZvqVrtyZeJg5Zgh0iI9yarusMBBy2cPDbWwIHo_Hy_snze568eRG6xnCHAcf3b-ArJJxiCn7k-AR1cMR4SIHPT1FnL4d7_RxdOLf0K_FbBz2IQpQiHxSTlyCbjwuRiWmejoLHbJjO8qKcBKl4CqbFuBgVz3nfK9lrmc_SUSb62SU6a9TKmatj76JykE37w_DIhppEdBtGyvCEN4zpmmmSYKOA1RVUNamhahpdE9LgpKejGghnsap00-OYVD1KgHGtSRfdHnI3tv3cGbeV64XTZrVSH6bdOYkTSIByTolHb36hy3ZnP_x1EscxJ4wymngKHyhtW-esaeTGLtbKfkkMcv9P-eef3kOOHrWu7KJ-Nz-i_3V9A-bvcKE</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>BARREIRA, LUIS</creator><creator>POPESCU, LIVIU HORIA</creator><creator>VALLS, CLAUDIA</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201605</creationdate><title>NONUNIFORM EXPONENTIAL BEHAVIOUR AND TOPOLOGICAL EQUIVALENCE</title><author>BARREIRA, LUIS ; POPESCU, LIVIU HORIA ; VALLS, CLAUDIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-4ae989f66cd6c381ea06db0bd3d0bffcd33f182c4d03967abcf2913b253069cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Contracts</topic><topic>Dichotomies</topic><topic>Equivalence</topic><topic>Evolution</topic><topic>Mathematical analysis</topic><topic>Nonuniform</topic><topic>Topological manifolds</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BARREIRA, LUIS</creatorcontrib><creatorcontrib>POPESCU, LIVIU HORIA</creatorcontrib><creatorcontrib>VALLS, CLAUDIA</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BARREIRA, LUIS</au><au>POPESCU, LIVIU HORIA</au><au>VALLS, CLAUDIA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NONUNIFORM EXPONENTIAL BEHAVIOUR AND TOPOLOGICAL EQUIVALENCE</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2016-05</date><risdate>2016</risdate><volume>58</volume><issue>2</issue><spage>279</spage><epage>291</epage><pages>279-291</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>We show that any evolution family with a strong nonuniform exponential dichotomy can always be transformed by a topological equivalence to a canonical form that contracts and/or expands the same in all directions. We emphasize that strong nonuniform exponential dichotomies are ubiquitous in the context of ergodic theory. The main novelty of our work is that we are able to control the asymptotic behaviour of the topological conjugacies at the origin and at infinity.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089515000191</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-0895 |
ispartof | Glasgow mathematical journal, 2016-05, Vol.58 (2), p.279-291 |
issn | 0017-0895 1469-509X |
language | eng |
recordid | cdi_proquest_miscellaneous_1808059953 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge Journals |
subjects | Asymptotic properties Contracts Dichotomies Equivalence Evolution Mathematical analysis Nonuniform Topological manifolds Topology |
title | NONUNIFORM EXPONENTIAL BEHAVIOUR AND TOPOLOGICAL EQUIVALENCE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NONUNIFORM%20EXPONENTIAL%20BEHAVIOUR%20AND%20TOPOLOGICAL%20EQUIVALENCE&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=BARREIRA,%20LUIS&rft.date=2016-05&rft.volume=58&rft.issue=2&rft.spage=279&rft.epage=291&rft.pages=279-291&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089515000191&rft_dat=%3Cproquest_cross%3E4014468571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779365658&rft_id=info:pmid/&rft_cupid=10_1017_S0017089515000191&rfr_iscdi=true |