NONUNIFORM EXPONENTIAL BEHAVIOUR AND TOPOLOGICAL EQUIVALENCE

We show that any evolution family with a strong nonuniform exponential dichotomy can always be transformed by a topological equivalence to a canonical form that contracts and/or expands the same in all directions. We emphasize that strong nonuniform exponential dichotomies are ubiquitous in the cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2016-05, Vol.58 (2), p.279-291
Hauptverfasser: BARREIRA, LUIS, POPESCU, LIVIU HORIA, VALLS, CLAUDIA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 2
container_start_page 279
container_title Glasgow mathematical journal
container_volume 58
creator BARREIRA, LUIS
POPESCU, LIVIU HORIA
VALLS, CLAUDIA
description We show that any evolution family with a strong nonuniform exponential dichotomy can always be transformed by a topological equivalence to a canonical form that contracts and/or expands the same in all directions. We emphasize that strong nonuniform exponential dichotomies are ubiquitous in the context of ergodic theory. The main novelty of our work is that we are able to control the asymptotic behaviour of the topological conjugacies at the origin and at infinity.
doi_str_mv 10.1017/S0017089515000191
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808059953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089515000191</cupid><sourcerecordid>4014468571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-4ae989f66cd6c381ea06db0bd3d0bffcd33f182c4d03967abcf2913b253069cc3</originalsourceid><addsrcrecordid>eNp1kE9PwjAYxhujiYh-AG9LvHiZvqVrtyZeJg5Zgh0iI9yarusMBBy2cPDbWwIHo_Hy_snze568eRG6xnCHAcf3b-ArJJxiCn7k-AR1cMR4SIHPT1FnL4d7_RxdOLf0K_FbBz2IQpQiHxSTlyCbjwuRiWmejoLHbJjO8qKcBKl4CqbFuBgVz3nfK9lrmc_SUSb62SU6a9TKmatj76JykE37w_DIhppEdBtGyvCEN4zpmmmSYKOA1RVUNamhahpdE9LgpKejGghnsap00-OYVD1KgHGtSRfdHnI3tv3cGbeV64XTZrVSH6bdOYkTSIByTolHb36hy3ZnP_x1EscxJ4wymngKHyhtW-esaeTGLtbKfkkMcv9P-eef3kOOHrWu7KJ-Nz-i_3V9A-bvcKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779365658</pqid></control><display><type>article</type><title>NONUNIFORM EXPONENTIAL BEHAVIOUR AND TOPOLOGICAL EQUIVALENCE</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge Journals</source><creator>BARREIRA, LUIS ; POPESCU, LIVIU HORIA ; VALLS, CLAUDIA</creator><creatorcontrib>BARREIRA, LUIS ; POPESCU, LIVIU HORIA ; VALLS, CLAUDIA</creatorcontrib><description>We show that any evolution family with a strong nonuniform exponential dichotomy can always be transformed by a topological equivalence to a canonical form that contracts and/or expands the same in all directions. We emphasize that strong nonuniform exponential dichotomies are ubiquitous in the context of ergodic theory. The main novelty of our work is that we are able to control the asymptotic behaviour of the topological conjugacies at the origin and at infinity.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089515000191</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymptotic properties ; Contracts ; Dichotomies ; Equivalence ; Evolution ; Mathematical analysis ; Nonuniform ; Topological manifolds ; Topology</subject><ispartof>Glasgow mathematical journal, 2016-05, Vol.58 (2), p.279-291</ispartof><rights>Copyright © Glasgow Mathematical Journal Trust 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c345t-4ae989f66cd6c381ea06db0bd3d0bffcd33f182c4d03967abcf2913b253069cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089515000191/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>BARREIRA, LUIS</creatorcontrib><creatorcontrib>POPESCU, LIVIU HORIA</creatorcontrib><creatorcontrib>VALLS, CLAUDIA</creatorcontrib><title>NONUNIFORM EXPONENTIAL BEHAVIOUR AND TOPOLOGICAL EQUIVALENCE</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>We show that any evolution family with a strong nonuniform exponential dichotomy can always be transformed by a topological equivalence to a canonical form that contracts and/or expands the same in all directions. We emphasize that strong nonuniform exponential dichotomies are ubiquitous in the context of ergodic theory. The main novelty of our work is that we are able to control the asymptotic behaviour of the topological conjugacies at the origin and at infinity.</description><subject>Asymptotic properties</subject><subject>Contracts</subject><subject>Dichotomies</subject><subject>Equivalence</subject><subject>Evolution</subject><subject>Mathematical analysis</subject><subject>Nonuniform</subject><subject>Topological manifolds</subject><subject>Topology</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9PwjAYxhujiYh-AG9LvHiZvqVrtyZeJg5Zgh0iI9yarusMBBy2cPDbWwIHo_Hy_snze568eRG6xnCHAcf3b-ArJJxiCn7k-AR1cMR4SIHPT1FnL4d7_RxdOLf0K_FbBz2IQpQiHxSTlyCbjwuRiWmejoLHbJjO8qKcBKl4CqbFuBgVz3nfK9lrmc_SUSb62SU6a9TKmatj76JykE37w_DIhppEdBtGyvCEN4zpmmmSYKOA1RVUNamhahpdE9LgpKejGghnsap00-OYVD1KgHGtSRfdHnI3tv3cGbeV64XTZrVSH6bdOYkTSIByTolHb36hy3ZnP_x1EscxJ4wymngKHyhtW-esaeTGLtbKfkkMcv9P-eef3kOOHrWu7KJ-Nz-i_3V9A-bvcKE</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>BARREIRA, LUIS</creator><creator>POPESCU, LIVIU HORIA</creator><creator>VALLS, CLAUDIA</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201605</creationdate><title>NONUNIFORM EXPONENTIAL BEHAVIOUR AND TOPOLOGICAL EQUIVALENCE</title><author>BARREIRA, LUIS ; POPESCU, LIVIU HORIA ; VALLS, CLAUDIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-4ae989f66cd6c381ea06db0bd3d0bffcd33f182c4d03967abcf2913b253069cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Contracts</topic><topic>Dichotomies</topic><topic>Equivalence</topic><topic>Evolution</topic><topic>Mathematical analysis</topic><topic>Nonuniform</topic><topic>Topological manifolds</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BARREIRA, LUIS</creatorcontrib><creatorcontrib>POPESCU, LIVIU HORIA</creatorcontrib><creatorcontrib>VALLS, CLAUDIA</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BARREIRA, LUIS</au><au>POPESCU, LIVIU HORIA</au><au>VALLS, CLAUDIA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NONUNIFORM EXPONENTIAL BEHAVIOUR AND TOPOLOGICAL EQUIVALENCE</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2016-05</date><risdate>2016</risdate><volume>58</volume><issue>2</issue><spage>279</spage><epage>291</epage><pages>279-291</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>We show that any evolution family with a strong nonuniform exponential dichotomy can always be transformed by a topological equivalence to a canonical form that contracts and/or expands the same in all directions. We emphasize that strong nonuniform exponential dichotomies are ubiquitous in the context of ergodic theory. The main novelty of our work is that we are able to control the asymptotic behaviour of the topological conjugacies at the origin and at infinity.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089515000191</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-0895
ispartof Glasgow mathematical journal, 2016-05, Vol.58 (2), p.279-291
issn 0017-0895
1469-509X
language eng
recordid cdi_proquest_miscellaneous_1808059953
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge Journals
subjects Asymptotic properties
Contracts
Dichotomies
Equivalence
Evolution
Mathematical analysis
Nonuniform
Topological manifolds
Topology
title NONUNIFORM EXPONENTIAL BEHAVIOUR AND TOPOLOGICAL EQUIVALENCE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NONUNIFORM%20EXPONENTIAL%20BEHAVIOUR%20AND%20TOPOLOGICAL%20EQUIVALENCE&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=BARREIRA,%20LUIS&rft.date=2016-05&rft.volume=58&rft.issue=2&rft.spage=279&rft.epage=291&rft.pages=279-291&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089515000191&rft_dat=%3Cproquest_cross%3E4014468571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779365658&rft_id=info:pmid/&rft_cupid=10_1017_S0017089515000191&rfr_iscdi=true