Recent emergence of photon upconversion based on triplet energy migration in molecular assemblies
An emerging field of triplet energy migration-based photon upconversion (TEM-UC) is reviewed. Highly efficient photon upconversion has been realized in a wide range of chromophore assemblies, such as non-solvent liquids, ionic liquids, amorphous solids, gels, supramolecular assemblies, molecular cry...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2016-01, Vol.52 (31), p.5354-5370 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An emerging field of triplet energy migration-based photon upconversion (TEM-UC) is reviewed. Highly efficient photon upconversion has been realized in a wide range of chromophore assemblies, such as non-solvent liquids, ionic liquids, amorphous solids, gels, supramolecular assemblies, molecular crystals, and metal-organic frameworks (MOFs). The control over their assembly structures allows for unexpected air-stability and maximum upconversion quantum yield at weak solar irradiance that has never been achieved by the conventional molecular diffusion-based mechanism. The introduction of the "self-assembly" concept offers a new perspective in photon upconversion research and triplet exciton science, which show promise for numerous applications ranging from solar energy conversion to chemical biology. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/c6cc00089d |