Imaginary geometry I: interacting SLEs

Fix constants χ > 0 and θ ∈ [ 0 , 2 π ) , and let h be an instance of the Gaussian free field on a planar domain. We study flow lines of the vector field e i ( h / χ + θ ) starting at a fixed boundary point of the domain. Letting θ vary, one obtains a family of curves that look locally like SLE κ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2016-04, Vol.164 (3-4), p.553-705
Hauptverfasser: Miller, Jason, Sheffield, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 705
container_issue 3-4
container_start_page 553
container_title Probability theory and related fields
container_volume 164
creator Miller, Jason
Sheffield, Scott
description Fix constants χ > 0 and θ ∈ [ 0 , 2 π ) , and let h be an instance of the Gaussian free field on a planar domain. We study flow lines of the vector field e i ( h / χ + θ ) starting at a fixed boundary point of the domain. Letting θ vary, one obtains a family of curves that look locally like SLE κ processes with κ ∈ ( 0 , 4 ) (where χ = 2 κ - κ 2 ), which we interpret as the rays of a random geometry with purely imaginary curvature. We extend the fundamental existence and uniqueness results about these paths to the case that the paths intersect the boundary. We also show that flow lines of different angles cross each other at most once but (in contrast to what happens when h is smooth) may bounce off of each other after crossing. Flow lines of the same angle started at different points merge into each other upon intersecting, forming a tree structure. We construct so-called counterflow lines ( SLE 16 / κ ) within the same geometry using ordered “light cones” of points accessible by angle-restricted trajectories and develop a robust theory of flow and counterflow line interaction. The theory leads to new results about SLE . For example, we prove that SLE κ ( ρ ) processes are almost surely continuous random curves, even when they intersect the boundary, and establish Duplantier duality for general SLE 16 / κ ( ρ ) processes.
doi_str_mv 10.1007/s00440-016-0698-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808057474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616480341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-77fa76f5df248b758505c65c7c5b78364a8c05ccd7782ec150a27d22d4e36f03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFtBEC_RyedEb1KqFgoe7D2k2eyypbtbk92D_96U9VAEPc0wPO8w8xByzeCeAeBDApASKDBNQT8aCidkwqTglIOWp2QCDA01oNg5uUhpCwBcSD4ht8vGVXXr4tesCl0T-twsn2Z124fofF-31exjtUiX5Kx0uxSufuqUrF8W6_kbXb2_LufPK-ql0T1FLB3qUhUll2aDyihQXiuPXm3QCC2d8XniC0TDg2cKHMeC80IGoUsQU3I3rt3H7nMIqbdNnXzY7VwbuiFZZiD_gBJlRm9-odtuiG0-znLNtDQgJPuPYohKgDFKZ4qNlI9dSjGUdh_rJjuxDOxBrx312qzXHvTaw6l8zKTMtlWIR5v_DH0DIER4-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1775308856</pqid></control><display><type>article</type><title>Imaginary geometry I: interacting SLEs</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Miller, Jason ; Sheffield, Scott</creator><creatorcontrib>Miller, Jason ; Sheffield, Scott</creatorcontrib><description>Fix constants χ &gt; 0 and θ ∈ [ 0 , 2 π ) , and let h be an instance of the Gaussian free field on a planar domain. We study flow lines of the vector field e i ( h / χ + θ ) starting at a fixed boundary point of the domain. Letting θ vary, one obtains a family of curves that look locally like SLE κ processes with κ ∈ ( 0 , 4 ) (where χ = 2 κ - κ 2 ), which we interpret as the rays of a random geometry with purely imaginary curvature. We extend the fundamental existence and uniqueness results about these paths to the case that the paths intersect the boundary. We also show that flow lines of different angles cross each other at most once but (in contrast to what happens when h is smooth) may bounce off of each other after crossing. Flow lines of the same angle started at different points merge into each other upon intersecting, forming a tree structure. We construct so-called counterflow lines ( SLE 16 / κ ) within the same geometry using ordered “light cones” of points accessible by angle-restricted trajectories and develop a robust theory of flow and counterflow line interaction. The theory leads to new results about SLE . For example, we prove that SLE κ ( ρ ) processes are almost surely continuous random curves, even when they intersect the boundary, and establish Duplantier duality for general SLE 16 / κ ( ρ ) processes.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-016-0698-0</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accessibility ; Angles (geometry) ; Boundaries ; Boundary conditions ; Cones ; Constants ; Counterflow ; Domains ; Economics ; Fields (mathematics) ; Finance ; Gaussian ; Geometry ; Insurance ; Management ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistics for Business ; Studies ; Texts ; Theoretical</subject><ispartof>Probability theory and related fields, 2016-04, Vol.164 (3-4), p.553-705</ispartof><rights>The Author(s) 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>The Author(s) 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-77fa76f5df248b758505c65c7c5b78364a8c05ccd7782ec150a27d22d4e36f03</citedby><cites>FETCH-LOGICAL-c486t-77fa76f5df248b758505c65c7c5b78364a8c05ccd7782ec150a27d22d4e36f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-016-0698-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-016-0698-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Miller, Jason</creatorcontrib><creatorcontrib>Sheffield, Scott</creatorcontrib><title>Imaginary geometry I: interacting SLEs</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>Fix constants χ &gt; 0 and θ ∈ [ 0 , 2 π ) , and let h be an instance of the Gaussian free field on a planar domain. We study flow lines of the vector field e i ( h / χ + θ ) starting at a fixed boundary point of the domain. Letting θ vary, one obtains a family of curves that look locally like SLE κ processes with κ ∈ ( 0 , 4 ) (where χ = 2 κ - κ 2 ), which we interpret as the rays of a random geometry with purely imaginary curvature. We extend the fundamental existence and uniqueness results about these paths to the case that the paths intersect the boundary. We also show that flow lines of different angles cross each other at most once but (in contrast to what happens when h is smooth) may bounce off of each other after crossing. Flow lines of the same angle started at different points merge into each other upon intersecting, forming a tree structure. We construct so-called counterflow lines ( SLE 16 / κ ) within the same geometry using ordered “light cones” of points accessible by angle-restricted trajectories and develop a robust theory of flow and counterflow line interaction. The theory leads to new results about SLE . For example, we prove that SLE κ ( ρ ) processes are almost surely continuous random curves, even when they intersect the boundary, and establish Duplantier duality for general SLE 16 / κ ( ρ ) processes.</description><subject>Accessibility</subject><subject>Angles (geometry)</subject><subject>Boundaries</subject><subject>Boundary conditions</subject><subject>Cones</subject><subject>Constants</subject><subject>Counterflow</subject><subject>Domains</subject><subject>Economics</subject><subject>Fields (mathematics)</subject><subject>Finance</subject><subject>Gaussian</subject><subject>Geometry</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Studies</subject><subject>Texts</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wFtBEC_RyedEb1KqFgoe7D2k2eyypbtbk92D_96U9VAEPc0wPO8w8xByzeCeAeBDApASKDBNQT8aCidkwqTglIOWp2QCDA01oNg5uUhpCwBcSD4ht8vGVXXr4tesCl0T-twsn2Z124fofF-31exjtUiX5Kx0uxSufuqUrF8W6_kbXb2_LufPK-ql0T1FLB3qUhUll2aDyihQXiuPXm3QCC2d8XniC0TDg2cKHMeC80IGoUsQU3I3rt3H7nMIqbdNnXzY7VwbuiFZZiD_gBJlRm9-odtuiG0-znLNtDQgJPuPYohKgDFKZ4qNlI9dSjGUdh_rJjuxDOxBrx312qzXHvTaw6l8zKTMtlWIR5v_DH0DIER4-g</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Miller, Jason</creator><creator>Sheffield, Scott</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160401</creationdate><title>Imaginary geometry I: interacting SLEs</title><author>Miller, Jason ; Sheffield, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-77fa76f5df248b758505c65c7c5b78364a8c05ccd7782ec150a27d22d4e36f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accessibility</topic><topic>Angles (geometry)</topic><topic>Boundaries</topic><topic>Boundary conditions</topic><topic>Cones</topic><topic>Constants</topic><topic>Counterflow</topic><topic>Domains</topic><topic>Economics</topic><topic>Fields (mathematics)</topic><topic>Finance</topic><topic>Gaussian</topic><topic>Geometry</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Studies</topic><topic>Texts</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Jason</creatorcontrib><creatorcontrib>Sheffield, Scott</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Jason</au><au>Sheffield, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaginary geometry I: interacting SLEs</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>164</volume><issue>3-4</issue><spage>553</spage><epage>705</epage><pages>553-705</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>Fix constants χ &gt; 0 and θ ∈ [ 0 , 2 π ) , and let h be an instance of the Gaussian free field on a planar domain. We study flow lines of the vector field e i ( h / χ + θ ) starting at a fixed boundary point of the domain. Letting θ vary, one obtains a family of curves that look locally like SLE κ processes with κ ∈ ( 0 , 4 ) (where χ = 2 κ - κ 2 ), which we interpret as the rays of a random geometry with purely imaginary curvature. We extend the fundamental existence and uniqueness results about these paths to the case that the paths intersect the boundary. We also show that flow lines of different angles cross each other at most once but (in contrast to what happens when h is smooth) may bounce off of each other after crossing. Flow lines of the same angle started at different points merge into each other upon intersecting, forming a tree structure. We construct so-called counterflow lines ( SLE 16 / κ ) within the same geometry using ordered “light cones” of points accessible by angle-restricted trajectories and develop a robust theory of flow and counterflow line interaction. The theory leads to new results about SLE . For example, we prove that SLE κ ( ρ ) processes are almost surely continuous random curves, even when they intersect the boundary, and establish Duplantier duality for general SLE 16 / κ ( ρ ) processes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-016-0698-0</doi><tpages>153</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2016-04, Vol.164 (3-4), p.553-705
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_miscellaneous_1808057474
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Accessibility
Angles (geometry)
Boundaries
Boundary conditions
Cones
Constants
Counterflow
Domains
Economics
Fields (mathematics)
Finance
Gaussian
Geometry
Insurance
Management
Mathematical analysis
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Statistics for Business
Studies
Texts
Theoretical
title Imaginary geometry I: interacting SLEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaginary%20geometry%20I:%20interacting%20SLEs&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Miller,%20Jason&rft.date=2016-04-01&rft.volume=164&rft.issue=3-4&rft.spage=553&rft.epage=705&rft.pages=553-705&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-016-0698-0&rft_dat=%3Cproquest_cross%3E2616480341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1775308856&rft_id=info:pmid/&rfr_iscdi=true