Imaginary geometry I: interacting SLEs
Fix constants χ > 0 and θ ∈ [ 0 , 2 π ) , and let h be an instance of the Gaussian free field on a planar domain. We study flow lines of the vector field e i ( h / χ + θ ) starting at a fixed boundary point of the domain. Letting θ vary, one obtains a family of curves that look locally like SLE κ...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2016-04, Vol.164 (3-4), p.553-705 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 705 |
---|---|
container_issue | 3-4 |
container_start_page | 553 |
container_title | Probability theory and related fields |
container_volume | 164 |
creator | Miller, Jason Sheffield, Scott |
description | Fix constants
χ
>
0
and
θ
∈
[
0
,
2
π
)
, and let
h
be an instance of the Gaussian free field on a planar domain. We study flow lines of the vector field
e
i
(
h
/
χ
+
θ
)
starting at a fixed boundary point of the domain. Letting
θ
vary, one obtains a family of curves that look locally like
SLE
κ
processes with
κ
∈
(
0
,
4
)
(where
χ
=
2
κ
-
κ
2
), which we interpret as the rays of a random geometry with purely imaginary curvature. We extend the fundamental existence and uniqueness results about these paths to the case that the paths intersect the boundary. We also show that flow lines of different angles cross each other at most once but (in contrast to what happens when
h
is smooth) may bounce off of each other after crossing. Flow lines of the same angle started at different points merge into each other upon intersecting, forming a tree structure. We construct so-called
counterflow lines
(
SLE
16
/
κ
) within the same geometry using ordered “light cones” of points accessible by angle-restricted trajectories and develop a robust theory of flow and counterflow line interaction. The theory leads to new results about
SLE
. For example, we prove that
SLE
κ
(
ρ
)
processes are almost surely continuous random curves, even when they intersect the boundary, and establish Duplantier duality for general
SLE
16
/
κ
(
ρ
)
processes. |
doi_str_mv | 10.1007/s00440-016-0698-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808057474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616480341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-77fa76f5df248b758505c65c7c5b78364a8c05ccd7782ec150a27d22d4e36f03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFtBEC_RyedEb1KqFgoe7D2k2eyypbtbk92D_96U9VAEPc0wPO8w8xByzeCeAeBDApASKDBNQT8aCidkwqTglIOWp2QCDA01oNg5uUhpCwBcSD4ht8vGVXXr4tesCl0T-twsn2Z124fofF-31exjtUiX5Kx0uxSufuqUrF8W6_kbXb2_LufPK-ql0T1FLB3qUhUll2aDyihQXiuPXm3QCC2d8XniC0TDg2cKHMeC80IGoUsQU3I3rt3H7nMIqbdNnXzY7VwbuiFZZiD_gBJlRm9-odtuiG0-znLNtDQgJPuPYohKgDFKZ4qNlI9dSjGUdh_rJjuxDOxBrx312qzXHvTaw6l8zKTMtlWIR5v_DH0DIER4-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1775308856</pqid></control><display><type>article</type><title>Imaginary geometry I: interacting SLEs</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Miller, Jason ; Sheffield, Scott</creator><creatorcontrib>Miller, Jason ; Sheffield, Scott</creatorcontrib><description>Fix constants
χ
>
0
and
θ
∈
[
0
,
2
π
)
, and let
h
be an instance of the Gaussian free field on a planar domain. We study flow lines of the vector field
e
i
(
h
/
χ
+
θ
)
starting at a fixed boundary point of the domain. Letting
θ
vary, one obtains a family of curves that look locally like
SLE
κ
processes with
κ
∈
(
0
,
4
)
(where
χ
=
2
κ
-
κ
2
), which we interpret as the rays of a random geometry with purely imaginary curvature. We extend the fundamental existence and uniqueness results about these paths to the case that the paths intersect the boundary. We also show that flow lines of different angles cross each other at most once but (in contrast to what happens when
h
is smooth) may bounce off of each other after crossing. Flow lines of the same angle started at different points merge into each other upon intersecting, forming a tree structure. We construct so-called
counterflow lines
(
SLE
16
/
κ
) within the same geometry using ordered “light cones” of points accessible by angle-restricted trajectories and develop a robust theory of flow and counterflow line interaction. The theory leads to new results about
SLE
. For example, we prove that
SLE
κ
(
ρ
)
processes are almost surely continuous random curves, even when they intersect the boundary, and establish Duplantier duality for general
SLE
16
/
κ
(
ρ
)
processes.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-016-0698-0</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accessibility ; Angles (geometry) ; Boundaries ; Boundary conditions ; Cones ; Constants ; Counterflow ; Domains ; Economics ; Fields (mathematics) ; Finance ; Gaussian ; Geometry ; Insurance ; Management ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistics for Business ; Studies ; Texts ; Theoretical</subject><ispartof>Probability theory and related fields, 2016-04, Vol.164 (3-4), p.553-705</ispartof><rights>The Author(s) 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>The Author(s) 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-77fa76f5df248b758505c65c7c5b78364a8c05ccd7782ec150a27d22d4e36f03</citedby><cites>FETCH-LOGICAL-c486t-77fa76f5df248b758505c65c7c5b78364a8c05ccd7782ec150a27d22d4e36f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-016-0698-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-016-0698-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Miller, Jason</creatorcontrib><creatorcontrib>Sheffield, Scott</creatorcontrib><title>Imaginary geometry I: interacting SLEs</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>Fix constants
χ
>
0
and
θ
∈
[
0
,
2
π
)
, and let
h
be an instance of the Gaussian free field on a planar domain. We study flow lines of the vector field
e
i
(
h
/
χ
+
θ
)
starting at a fixed boundary point of the domain. Letting
θ
vary, one obtains a family of curves that look locally like
SLE
κ
processes with
κ
∈
(
0
,
4
)
(where
χ
=
2
κ
-
κ
2
), which we interpret as the rays of a random geometry with purely imaginary curvature. We extend the fundamental existence and uniqueness results about these paths to the case that the paths intersect the boundary. We also show that flow lines of different angles cross each other at most once but (in contrast to what happens when
h
is smooth) may bounce off of each other after crossing. Flow lines of the same angle started at different points merge into each other upon intersecting, forming a tree structure. We construct so-called
counterflow lines
(
SLE
16
/
κ
) within the same geometry using ordered “light cones” of points accessible by angle-restricted trajectories and develop a robust theory of flow and counterflow line interaction. The theory leads to new results about
SLE
. For example, we prove that
SLE
κ
(
ρ
)
processes are almost surely continuous random curves, even when they intersect the boundary, and establish Duplantier duality for general
SLE
16
/
κ
(
ρ
)
processes.</description><subject>Accessibility</subject><subject>Angles (geometry)</subject><subject>Boundaries</subject><subject>Boundary conditions</subject><subject>Cones</subject><subject>Constants</subject><subject>Counterflow</subject><subject>Domains</subject><subject>Economics</subject><subject>Fields (mathematics)</subject><subject>Finance</subject><subject>Gaussian</subject><subject>Geometry</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Studies</subject><subject>Texts</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wFtBEC_RyedEb1KqFgoe7D2k2eyypbtbk92D_96U9VAEPc0wPO8w8xByzeCeAeBDApASKDBNQT8aCidkwqTglIOWp2QCDA01oNg5uUhpCwBcSD4ht8vGVXXr4tesCl0T-twsn2Z124fofF-31exjtUiX5Kx0uxSufuqUrF8W6_kbXb2_LufPK-ql0T1FLB3qUhUll2aDyihQXiuPXm3QCC2d8XniC0TDg2cKHMeC80IGoUsQU3I3rt3H7nMIqbdNnXzY7VwbuiFZZiD_gBJlRm9-odtuiG0-znLNtDQgJPuPYohKgDFKZ4qNlI9dSjGUdh_rJjuxDOxBrx312qzXHvTaw6l8zKTMtlWIR5v_DH0DIER4-g</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Miller, Jason</creator><creator>Sheffield, Scott</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160401</creationdate><title>Imaginary geometry I: interacting SLEs</title><author>Miller, Jason ; Sheffield, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-77fa76f5df248b758505c65c7c5b78364a8c05ccd7782ec150a27d22d4e36f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accessibility</topic><topic>Angles (geometry)</topic><topic>Boundaries</topic><topic>Boundary conditions</topic><topic>Cones</topic><topic>Constants</topic><topic>Counterflow</topic><topic>Domains</topic><topic>Economics</topic><topic>Fields (mathematics)</topic><topic>Finance</topic><topic>Gaussian</topic><topic>Geometry</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Studies</topic><topic>Texts</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Jason</creatorcontrib><creatorcontrib>Sheffield, Scott</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Jason</au><au>Sheffield, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaginary geometry I: interacting SLEs</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>164</volume><issue>3-4</issue><spage>553</spage><epage>705</epage><pages>553-705</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>Fix constants
χ
>
0
and
θ
∈
[
0
,
2
π
)
, and let
h
be an instance of the Gaussian free field on a planar domain. We study flow lines of the vector field
e
i
(
h
/
χ
+
θ
)
starting at a fixed boundary point of the domain. Letting
θ
vary, one obtains a family of curves that look locally like
SLE
κ
processes with
κ
∈
(
0
,
4
)
(where
χ
=
2
κ
-
κ
2
), which we interpret as the rays of a random geometry with purely imaginary curvature. We extend the fundamental existence and uniqueness results about these paths to the case that the paths intersect the boundary. We also show that flow lines of different angles cross each other at most once but (in contrast to what happens when
h
is smooth) may bounce off of each other after crossing. Flow lines of the same angle started at different points merge into each other upon intersecting, forming a tree structure. We construct so-called
counterflow lines
(
SLE
16
/
κ
) within the same geometry using ordered “light cones” of points accessible by angle-restricted trajectories and develop a robust theory of flow and counterflow line interaction. The theory leads to new results about
SLE
. For example, we prove that
SLE
κ
(
ρ
)
processes are almost surely continuous random curves, even when they intersect the boundary, and establish Duplantier duality for general
SLE
16
/
κ
(
ρ
)
processes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-016-0698-0</doi><tpages>153</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2016-04, Vol.164 (3-4), p.553-705 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808057474 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Accessibility Angles (geometry) Boundaries Boundary conditions Cones Constants Counterflow Domains Economics Fields (mathematics) Finance Gaussian Geometry Insurance Management Mathematical analysis Mathematical and Computational Biology Mathematical and Computational Physics Mathematics Mathematics and Statistics Operations Research/Decision Theory Probability Probability Theory and Stochastic Processes Quantitative Finance Statistics for Business Studies Texts Theoretical |
title | Imaginary geometry I: interacting SLEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaginary%20geometry%20I:%20interacting%20SLEs&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Miller,%20Jason&rft.date=2016-04-01&rft.volume=164&rft.issue=3-4&rft.spage=553&rft.epage=705&rft.pages=553-705&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-016-0698-0&rft_dat=%3Cproquest_cross%3E2616480341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1775308856&rft_id=info:pmid/&rfr_iscdi=true |