Computation of general correlation coefficients for interval data
This paper provides a comprehensive analysis of computational problems concerning calculation of general correlation coefficients for interval data. Exact algorithms solving this task have unacceptable computational complexity for larger samples, therefore we concentrate on computational problems ar...
Gespeichert in:
Veröffentlicht in: | International journal of approximate reasoning 2016-06, Vol.73, p.56-75 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | |
container_start_page | 56 |
container_title | International journal of approximate reasoning |
container_volume | 73 |
creator | Opara, Karol R. Hryniewicz, Olgierd |
description | This paper provides a comprehensive analysis of computational problems concerning calculation of general correlation coefficients for interval data. Exact algorithms solving this task have unacceptable computational complexity for larger samples, therefore we concentrate on computational problems arising in approximate algorithms. General correlation coefficients for interval data are also given by intervals. We derive bounds on their lower and upper endpoints. Moreover, we propose a set of heuristic solutions and optimization methods for approximate computation. Extensive simulation experiments show that the heuristics yield very good solutions for strong dependencies. In other cases, global optimization using evolutionary algorithm performs best. A real data example of autocorrelation of cloud cover data confirms the applicability of the approach.
•Crisp and interval generalized correlation coefficients are discussed.•Outer bounds for Spearman's rho and Kendall's tau are derived.•Comparison of algorithms computing correlation coefficients for interval data.•Simple heuristic solutions prove effective for strong dependencies.•Simulation study and a real data example show applicability of the approach. |
doi_str_mv | 10.1016/j.ijar.2016.02.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808054338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888613X16300172</els_id><sourcerecordid>1808054338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-7b7591956bf0d84f3f7c021e598d7993c178f0053ae2ef6b7174b3db35e1e5903</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFf_gKcevbROmrZJwcuy-AULXhS8hTSdSEq3qUl2wX9vSz17mmF43oH3IeSWQk6B1vd9bnvl82LecyhyAH5GEio4y0rO6DlJQAiR1ZR9XpKrEHoAqHkpErLducN0jCpaN6bOpF84oldDqp33OKxn7dAYqy2OMaTG-dSOEf1ppjoV1TW5MGoIePM3N-Tj6fF995Lt355fd9t9phnnMeMtrxraVHVroBOlYYZrKChWjeh40zBNuTAAFVNYoKlbTnnZsq5lFS4QsA25W_9O3n0fMUR5sEHjMKgR3TFIKkBAVTImZrRYUe1dCB6NnLw9KP8jKcjFl-zl4ksuviQUcvY1hx7WEM4lTha9DEtljZ31qKPsnP0v_gvNxnPN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808054338</pqid></control><display><type>article</type><title>Computation of general correlation coefficients for interval data</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Opara, Karol R. ; Hryniewicz, Olgierd</creator><creatorcontrib>Opara, Karol R. ; Hryniewicz, Olgierd</creatorcontrib><description>This paper provides a comprehensive analysis of computational problems concerning calculation of general correlation coefficients for interval data. Exact algorithms solving this task have unacceptable computational complexity for larger samples, therefore we concentrate on computational problems arising in approximate algorithms. General correlation coefficients for interval data are also given by intervals. We derive bounds on their lower and upper endpoints. Moreover, we propose a set of heuristic solutions and optimization methods for approximate computation. Extensive simulation experiments show that the heuristics yield very good solutions for strong dependencies. In other cases, global optimization using evolutionary algorithm performs best. A real data example of autocorrelation of cloud cover data confirms the applicability of the approach.
•Crisp and interval generalized correlation coefficients are discussed.•Outer bounds for Spearman's rho and Kendall's tau are derived.•Comparison of algorithms computing correlation coefficients for interval data.•Simple heuristic solutions prove effective for strong dependencies.•Simulation study and a real data example show applicability of the approach.</description><identifier>ISSN: 0888-613X</identifier><identifier>EISSN: 1873-4731</identifier><identifier>DOI: 10.1016/j.ijar.2016.02.007</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Approximation ; Computation ; Correlation coefficients ; Heuristic ; Interval data ; Intervals ; Kendall's tau ; Mathematical models ; Measures of dependence ; Optimization ; Partial orders ; Spearman's rho</subject><ispartof>International journal of approximate reasoning, 2016-06, Vol.73, p.56-75</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-7b7591956bf0d84f3f7c021e598d7993c178f0053ae2ef6b7174b3db35e1e5903</citedby><cites>FETCH-LOGICAL-c377t-7b7591956bf0d84f3f7c021e598d7993c178f0053ae2ef6b7174b3db35e1e5903</cites><orcidid>0000-0002-7149-4031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888613X16300172$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Opara, Karol R.</creatorcontrib><creatorcontrib>Hryniewicz, Olgierd</creatorcontrib><title>Computation of general correlation coefficients for interval data</title><title>International journal of approximate reasoning</title><description>This paper provides a comprehensive analysis of computational problems concerning calculation of general correlation coefficients for interval data. Exact algorithms solving this task have unacceptable computational complexity for larger samples, therefore we concentrate on computational problems arising in approximate algorithms. General correlation coefficients for interval data are also given by intervals. We derive bounds on their lower and upper endpoints. Moreover, we propose a set of heuristic solutions and optimization methods for approximate computation. Extensive simulation experiments show that the heuristics yield very good solutions for strong dependencies. In other cases, global optimization using evolutionary algorithm performs best. A real data example of autocorrelation of cloud cover data confirms the applicability of the approach.
•Crisp and interval generalized correlation coefficients are discussed.•Outer bounds for Spearman's rho and Kendall's tau are derived.•Comparison of algorithms computing correlation coefficients for interval data.•Simple heuristic solutions prove effective for strong dependencies.•Simulation study and a real data example show applicability of the approach.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computation</subject><subject>Correlation coefficients</subject><subject>Heuristic</subject><subject>Interval data</subject><subject>Intervals</subject><subject>Kendall's tau</subject><subject>Mathematical models</subject><subject>Measures of dependence</subject><subject>Optimization</subject><subject>Partial orders</subject><subject>Spearman's rho</subject><issn>0888-613X</issn><issn>1873-4731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFf_gKcevbROmrZJwcuy-AULXhS8hTSdSEq3qUl2wX9vSz17mmF43oH3IeSWQk6B1vd9bnvl82LecyhyAH5GEio4y0rO6DlJQAiR1ZR9XpKrEHoAqHkpErLducN0jCpaN6bOpF84oldDqp33OKxn7dAYqy2OMaTG-dSOEf1ppjoV1TW5MGoIePM3N-Tj6fF995Lt355fd9t9phnnMeMtrxraVHVroBOlYYZrKChWjeh40zBNuTAAFVNYoKlbTnnZsq5lFS4QsA25W_9O3n0fMUR5sEHjMKgR3TFIKkBAVTImZrRYUe1dCB6NnLw9KP8jKcjFl-zl4ksuviQUcvY1hx7WEM4lTha9DEtljZ31qKPsnP0v_gvNxnPN</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Opara, Karol R.</creator><creator>Hryniewicz, Olgierd</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7149-4031</orcidid></search><sort><creationdate>201606</creationdate><title>Computation of general correlation coefficients for interval data</title><author>Opara, Karol R. ; Hryniewicz, Olgierd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-7b7591956bf0d84f3f7c021e598d7993c178f0053ae2ef6b7174b3db35e1e5903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computation</topic><topic>Correlation coefficients</topic><topic>Heuristic</topic><topic>Interval data</topic><topic>Intervals</topic><topic>Kendall's tau</topic><topic>Mathematical models</topic><topic>Measures of dependence</topic><topic>Optimization</topic><topic>Partial orders</topic><topic>Spearman's rho</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Opara, Karol R.</creatorcontrib><creatorcontrib>Hryniewicz, Olgierd</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of approximate reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Opara, Karol R.</au><au>Hryniewicz, Olgierd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of general correlation coefficients for interval data</atitle><jtitle>International journal of approximate reasoning</jtitle><date>2016-06</date><risdate>2016</risdate><volume>73</volume><spage>56</spage><epage>75</epage><pages>56-75</pages><issn>0888-613X</issn><eissn>1873-4731</eissn><abstract>This paper provides a comprehensive analysis of computational problems concerning calculation of general correlation coefficients for interval data. Exact algorithms solving this task have unacceptable computational complexity for larger samples, therefore we concentrate on computational problems arising in approximate algorithms. General correlation coefficients for interval data are also given by intervals. We derive bounds on their lower and upper endpoints. Moreover, we propose a set of heuristic solutions and optimization methods for approximate computation. Extensive simulation experiments show that the heuristics yield very good solutions for strong dependencies. In other cases, global optimization using evolutionary algorithm performs best. A real data example of autocorrelation of cloud cover data confirms the applicability of the approach.
•Crisp and interval generalized correlation coefficients are discussed.•Outer bounds for Spearman's rho and Kendall's tau are derived.•Comparison of algorithms computing correlation coefficients for interval data.•Simple heuristic solutions prove effective for strong dependencies.•Simulation study and a real data example show applicability of the approach.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ijar.2016.02.007</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7149-4031</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-613X |
ispartof | International journal of approximate reasoning, 2016-06, Vol.73, p.56-75 |
issn | 0888-613X 1873-4731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808054338 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Approximation Computation Correlation coefficients Heuristic Interval data Intervals Kendall's tau Mathematical models Measures of dependence Optimization Partial orders Spearman's rho |
title | Computation of general correlation coefficients for interval data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20general%20correlation%20coefficients%20for%20interval%20data&rft.jtitle=International%20journal%20of%20approximate%20reasoning&rft.au=Opara,%20Karol%20R.&rft.date=2016-06&rft.volume=73&rft.spage=56&rft.epage=75&rft.pages=56-75&rft.issn=0888-613X&rft.eissn=1873-4731&rft_id=info:doi/10.1016/j.ijar.2016.02.007&rft_dat=%3Cproquest_cross%3E1808054338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808054338&rft_id=info:pmid/&rft_els_id=S0888613X16300172&rfr_iscdi=true |