Computation of general correlation coefficients for interval data

This paper provides a comprehensive analysis of computational problems concerning calculation of general correlation coefficients for interval data. Exact algorithms solving this task have unacceptable computational complexity for larger samples, therefore we concentrate on computational problems ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of approximate reasoning 2016-06, Vol.73, p.56-75
Hauptverfasser: Opara, Karol R., Hryniewicz, Olgierd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue
container_start_page 56
container_title International journal of approximate reasoning
container_volume 73
creator Opara, Karol R.
Hryniewicz, Olgierd
description This paper provides a comprehensive analysis of computational problems concerning calculation of general correlation coefficients for interval data. Exact algorithms solving this task have unacceptable computational complexity for larger samples, therefore we concentrate on computational problems arising in approximate algorithms. General correlation coefficients for interval data are also given by intervals. We derive bounds on their lower and upper endpoints. Moreover, we propose a set of heuristic solutions and optimization methods for approximate computation. Extensive simulation experiments show that the heuristics yield very good solutions for strong dependencies. In other cases, global optimization using evolutionary algorithm performs best. A real data example of autocorrelation of cloud cover data confirms the applicability of the approach. •Crisp and interval generalized correlation coefficients are discussed.•Outer bounds for Spearman's rho and Kendall's tau are derived.•Comparison of algorithms computing correlation coefficients for interval data.•Simple heuristic solutions prove effective for strong dependencies.•Simulation study and a real data example show applicability of the approach.
doi_str_mv 10.1016/j.ijar.2016.02.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808054338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888613X16300172</els_id><sourcerecordid>1808054338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-7b7591956bf0d84f3f7c021e598d7993c178f0053ae2ef6b7174b3db35e1e5903</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFf_gKcevbROmrZJwcuy-AULXhS8hTSdSEq3qUl2wX9vSz17mmF43oH3IeSWQk6B1vd9bnvl82LecyhyAH5GEio4y0rO6DlJQAiR1ZR9XpKrEHoAqHkpErLducN0jCpaN6bOpF84oldDqp33OKxn7dAYqy2OMaTG-dSOEf1ppjoV1TW5MGoIePM3N-Tj6fF995Lt355fd9t9phnnMeMtrxraVHVroBOlYYZrKChWjeh40zBNuTAAFVNYoKlbTnnZsq5lFS4QsA25W_9O3n0fMUR5sEHjMKgR3TFIKkBAVTImZrRYUe1dCB6NnLw9KP8jKcjFl-zl4ksuviQUcvY1hx7WEM4lTha9DEtljZ31qKPsnP0v_gvNxnPN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808054338</pqid></control><display><type>article</type><title>Computation of general correlation coefficients for interval data</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Opara, Karol R. ; Hryniewicz, Olgierd</creator><creatorcontrib>Opara, Karol R. ; Hryniewicz, Olgierd</creatorcontrib><description>This paper provides a comprehensive analysis of computational problems concerning calculation of general correlation coefficients for interval data. Exact algorithms solving this task have unacceptable computational complexity for larger samples, therefore we concentrate on computational problems arising in approximate algorithms. General correlation coefficients for interval data are also given by intervals. We derive bounds on their lower and upper endpoints. Moreover, we propose a set of heuristic solutions and optimization methods for approximate computation. Extensive simulation experiments show that the heuristics yield very good solutions for strong dependencies. In other cases, global optimization using evolutionary algorithm performs best. A real data example of autocorrelation of cloud cover data confirms the applicability of the approach. •Crisp and interval generalized correlation coefficients are discussed.•Outer bounds for Spearman's rho and Kendall's tau are derived.•Comparison of algorithms computing correlation coefficients for interval data.•Simple heuristic solutions prove effective for strong dependencies.•Simulation study and a real data example show applicability of the approach.</description><identifier>ISSN: 0888-613X</identifier><identifier>EISSN: 1873-4731</identifier><identifier>DOI: 10.1016/j.ijar.2016.02.007</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Approximation ; Computation ; Correlation coefficients ; Heuristic ; Interval data ; Intervals ; Kendall's tau ; Mathematical models ; Measures of dependence ; Optimization ; Partial orders ; Spearman's rho</subject><ispartof>International journal of approximate reasoning, 2016-06, Vol.73, p.56-75</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-7b7591956bf0d84f3f7c021e598d7993c178f0053ae2ef6b7174b3db35e1e5903</citedby><cites>FETCH-LOGICAL-c377t-7b7591956bf0d84f3f7c021e598d7993c178f0053ae2ef6b7174b3db35e1e5903</cites><orcidid>0000-0002-7149-4031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888613X16300172$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Opara, Karol R.</creatorcontrib><creatorcontrib>Hryniewicz, Olgierd</creatorcontrib><title>Computation of general correlation coefficients for interval data</title><title>International journal of approximate reasoning</title><description>This paper provides a comprehensive analysis of computational problems concerning calculation of general correlation coefficients for interval data. Exact algorithms solving this task have unacceptable computational complexity for larger samples, therefore we concentrate on computational problems arising in approximate algorithms. General correlation coefficients for interval data are also given by intervals. We derive bounds on their lower and upper endpoints. Moreover, we propose a set of heuristic solutions and optimization methods for approximate computation. Extensive simulation experiments show that the heuristics yield very good solutions for strong dependencies. In other cases, global optimization using evolutionary algorithm performs best. A real data example of autocorrelation of cloud cover data confirms the applicability of the approach. •Crisp and interval generalized correlation coefficients are discussed.•Outer bounds for Spearman's rho and Kendall's tau are derived.•Comparison of algorithms computing correlation coefficients for interval data.•Simple heuristic solutions prove effective for strong dependencies.•Simulation study and a real data example show applicability of the approach.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computation</subject><subject>Correlation coefficients</subject><subject>Heuristic</subject><subject>Interval data</subject><subject>Intervals</subject><subject>Kendall's tau</subject><subject>Mathematical models</subject><subject>Measures of dependence</subject><subject>Optimization</subject><subject>Partial orders</subject><subject>Spearman's rho</subject><issn>0888-613X</issn><issn>1873-4731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFf_gKcevbROmrZJwcuy-AULXhS8hTSdSEq3qUl2wX9vSz17mmF43oH3IeSWQk6B1vd9bnvl82LecyhyAH5GEio4y0rO6DlJQAiR1ZR9XpKrEHoAqHkpErLducN0jCpaN6bOpF84oldDqp33OKxn7dAYqy2OMaTG-dSOEf1ppjoV1TW5MGoIePM3N-Tj6fF995Lt355fd9t9phnnMeMtrxraVHVroBOlYYZrKChWjeh40zBNuTAAFVNYoKlbTnnZsq5lFS4QsA25W_9O3n0fMUR5sEHjMKgR3TFIKkBAVTImZrRYUe1dCB6NnLw9KP8jKcjFl-zl4ksuviQUcvY1hx7WEM4lTha9DEtljZ31qKPsnP0v_gvNxnPN</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Opara, Karol R.</creator><creator>Hryniewicz, Olgierd</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7149-4031</orcidid></search><sort><creationdate>201606</creationdate><title>Computation of general correlation coefficients for interval data</title><author>Opara, Karol R. ; Hryniewicz, Olgierd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-7b7591956bf0d84f3f7c021e598d7993c178f0053ae2ef6b7174b3db35e1e5903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computation</topic><topic>Correlation coefficients</topic><topic>Heuristic</topic><topic>Interval data</topic><topic>Intervals</topic><topic>Kendall's tau</topic><topic>Mathematical models</topic><topic>Measures of dependence</topic><topic>Optimization</topic><topic>Partial orders</topic><topic>Spearman's rho</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Opara, Karol R.</creatorcontrib><creatorcontrib>Hryniewicz, Olgierd</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of approximate reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Opara, Karol R.</au><au>Hryniewicz, Olgierd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of general correlation coefficients for interval data</atitle><jtitle>International journal of approximate reasoning</jtitle><date>2016-06</date><risdate>2016</risdate><volume>73</volume><spage>56</spage><epage>75</epage><pages>56-75</pages><issn>0888-613X</issn><eissn>1873-4731</eissn><abstract>This paper provides a comprehensive analysis of computational problems concerning calculation of general correlation coefficients for interval data. Exact algorithms solving this task have unacceptable computational complexity for larger samples, therefore we concentrate on computational problems arising in approximate algorithms. General correlation coefficients for interval data are also given by intervals. We derive bounds on their lower and upper endpoints. Moreover, we propose a set of heuristic solutions and optimization methods for approximate computation. Extensive simulation experiments show that the heuristics yield very good solutions for strong dependencies. In other cases, global optimization using evolutionary algorithm performs best. A real data example of autocorrelation of cloud cover data confirms the applicability of the approach. •Crisp and interval generalized correlation coefficients are discussed.•Outer bounds for Spearman's rho and Kendall's tau are derived.•Comparison of algorithms computing correlation coefficients for interval data.•Simple heuristic solutions prove effective for strong dependencies.•Simulation study and a real data example show applicability of the approach.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ijar.2016.02.007</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7149-4031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-613X
ispartof International journal of approximate reasoning, 2016-06, Vol.73, p.56-75
issn 0888-613X
1873-4731
language eng
recordid cdi_proquest_miscellaneous_1808054338
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Approximation
Computation
Correlation coefficients
Heuristic
Interval data
Intervals
Kendall's tau
Mathematical models
Measures of dependence
Optimization
Partial orders
Spearman's rho
title Computation of general correlation coefficients for interval data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20general%20correlation%20coefficients%20for%20interval%20data&rft.jtitle=International%20journal%20of%20approximate%20reasoning&rft.au=Opara,%20Karol%20R.&rft.date=2016-06&rft.volume=73&rft.spage=56&rft.epage=75&rft.pages=56-75&rft.issn=0888-613X&rft.eissn=1873-4731&rft_id=info:doi/10.1016/j.ijar.2016.02.007&rft_dat=%3Cproquest_cross%3E1808054338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808054338&rft_id=info:pmid/&rft_els_id=S0888613X16300172&rfr_iscdi=true