Generating functionals for quantum field theories with random potentials
A bstract We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. s...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2016-01, Vol.2016 (1), p.1-25, Article 107 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2016 |
creator | Jain, Mudit Vanchurin, Vitaly |
description | A
bstract
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space. |
doi_str_mv | 10.1007/JHEP01(2016)107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808054192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808054192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c59efa0c3ec8d920084b9375c500c45b31ea36b9b44680bab6cecea681ffc4d03</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqUws3osQ-hzvj2iqrSgSjDAbDnOc-sqsVvbEeLfk6oMLEz36umeNxxC7hk8MoBq_rpevgObpcDKBwbVBZkwSHlS5xW__NOvyU0IewBWMA4Tsl6hRS-jsVuqB6uicVZ2gWrn6XGQNg491Qa7lsYdOm8w0C8Td9RL27qeHlxEG81I3JIrPQbe_eaUfD4vPxbrZPO2elk8bRKVFWVMVMFRS1AZqrrlKUCdNzyrClUAqLxoMoYyKxve5HlZQyObUqFCWdZMa5W3kE3J7Pz34N1xwBBFb4LCrpMW3RAEq6GGImc8Hafz81R5F4JHLQ7e9NJ_Cwbi5EycnYmTs_FQjQSciTAu7Ra92LvBn4T8i_wAWx9vjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808054192</pqid></control><display><type>article</type><title>Generating functionals for quantum field theories with random potentials</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Jain, Mudit ; Vanchurin, Vitaly</creator><creatorcontrib>Jain, Mudit ; Vanchurin, Vitaly</creatorcontrib><description>A
bstract
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP01(2016)107</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amplitudes ; Classical and Quantum Gravitation ; Condensed matter ; Correlators ; Elementary Particles ; Functionals ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Quantum theory ; Regular Article - Theoretical Physics ; Relativity Theory ; Scalars ; Spin glass ; String Theory</subject><ispartof>The journal of high energy physics, 2016-01, Vol.2016 (1), p.1-25, Article 107</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-c59efa0c3ec8d920084b9375c500c45b31ea36b9b44680bab6cecea681ffc4d03</citedby><cites>FETCH-LOGICAL-c356t-c59efa0c3ec8d920084b9375c500c45b31ea36b9b44680bab6cecea681ffc4d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP01(2016)107$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP01(2016)107$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27922,27923,41118,42187,51574</link.rule.ids></links><search><creatorcontrib>Jain, Mudit</creatorcontrib><creatorcontrib>Vanchurin, Vitaly</creatorcontrib><title>Generating functionals for quantum field theories with random potentials</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.</description><subject>Amplitudes</subject><subject>Classical and Quantum Gravitation</subject><subject>Condensed matter</subject><subject>Correlators</subject><subject>Elementary Particles</subject><subject>Functionals</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Scalars</subject><subject>Spin glass</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kD1PwzAURS0EEqUws3osQ-hzvj2iqrSgSjDAbDnOc-sqsVvbEeLfk6oMLEz36umeNxxC7hk8MoBq_rpevgObpcDKBwbVBZkwSHlS5xW__NOvyU0IewBWMA4Tsl6hRS-jsVuqB6uicVZ2gWrn6XGQNg491Qa7lsYdOm8w0C8Td9RL27qeHlxEG81I3JIrPQbe_eaUfD4vPxbrZPO2elk8bRKVFWVMVMFRS1AZqrrlKUCdNzyrClUAqLxoMoYyKxve5HlZQyObUqFCWdZMa5W3kE3J7Pz34N1xwBBFb4LCrpMW3RAEq6GGImc8Hafz81R5F4JHLQ7e9NJ_Cwbi5EycnYmTs_FQjQSciTAu7Ra92LvBn4T8i_wAWx9vjw</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Jain, Mudit</creator><creator>Vanchurin, Vitaly</creator><general>Springer Berlin Heidelberg</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Generating functionals for quantum field theories with random potentials</title><author>Jain, Mudit ; Vanchurin, Vitaly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c59efa0c3ec8d920084b9375c500c45b31ea36b9b44680bab6cecea681ffc4d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplitudes</topic><topic>Classical and Quantum Gravitation</topic><topic>Condensed matter</topic><topic>Correlators</topic><topic>Elementary Particles</topic><topic>Functionals</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Scalars</topic><topic>Spin glass</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Mudit</creatorcontrib><creatorcontrib>Vanchurin, Vitaly</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Mudit</au><au>Vanchurin, Vitaly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating functionals for quantum field theories with random potentials</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>1</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><artnum>107</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP01(2016)107</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2016-01, Vol.2016 (1), p.1-25, Article 107 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808054192 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Amplitudes Classical and Quantum Gravitation Condensed matter Correlators Elementary Particles Functionals Mathematical analysis Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Quantum theory Regular Article - Theoretical Physics Relativity Theory Scalars Spin glass String Theory |
title | Generating functionals for quantum field theories with random potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20functionals%20for%20quantum%20field%20theories%20with%20random%20potentials&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Jain,%20Mudit&rft.date=2016-01-01&rft.volume=2016&rft.issue=1&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.artnum=107&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP01(2016)107&rft_dat=%3Cproquest_cross%3E1808054192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808054192&rft_id=info:pmid/&rfr_iscdi=true |