Estimation of Sobolev-type embedding constant on domains with minimally smooth boundary using extension operator

In this paper, we propose a method for estimating the Sobolev-type embedding constant from W 1 , q ( Ω ) to L p ( Ω ) on a domain Ω ⊂ R n ( n = 2 , 3 , … ) with minimally smooth boundary (also known as a Lipschitz domain), where p ∈ ( n / ( n − 1 ) , ∞ ) and q = n p / ( n + p ) . We estimate the emb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2015-12, Vol.2015 (1), p.1-23, Article 389
Hauptverfasser: Tanaka, Kazuaki, Sekine, Kouta, Mizuguchi, Makoto, Oishi, Shin’ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a method for estimating the Sobolev-type embedding constant from W 1 , q ( Ω ) to L p ( Ω ) on a domain Ω ⊂ R n ( n = 2 , 3 , … ) with minimally smooth boundary (also known as a Lipschitz domain), where p ∈ ( n / ( n − 1 ) , ∞ ) and q = n p / ( n + p ) . We estimate the embedding constant by constructing an extension operator from W 1 , q ( Ω ) to W 1 , q ( R n ) and computing its operator norm. We also present some examples of estimating the embedding constant for certain domains.
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-015-0907-x