Estimation of Sobolev-type embedding constant on domains with minimally smooth boundary using extension operator
In this paper, we propose a method for estimating the Sobolev-type embedding constant from W 1 , q ( Ω ) to L p ( Ω ) on a domain Ω ⊂ R n ( n = 2 , 3 , … ) with minimally smooth boundary (also known as a Lipschitz domain), where p ∈ ( n / ( n − 1 ) , ∞ ) and q = n p / ( n + p ) . We estimate the emb...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2015-12, Vol.2015 (1), p.1-23, Article 389 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a method for estimating the Sobolev-type embedding constant from
W
1
,
q
(
Ω
)
to
L
p
(
Ω
)
on a domain
Ω
⊂
R
n
(
n
=
2
,
3
,
…
) with minimally smooth boundary (also known as a Lipschitz domain), where
p
∈
(
n
/
(
n
−
1
)
,
∞
)
and
q
=
n
p
/
(
n
+
p
)
. We estimate the embedding constant by constructing an extension operator from
W
1
,
q
(
Ω
)
to
W
1
,
q
(
R
n
)
and computing its operator norm. We also present some examples of estimating the embedding constant for certain domains. |
---|---|
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-015-0907-x |