On the definition of entanglement entropy in lattice gauge theories

A bstract We focus on the issue of proper definition of entanglement entropy in lattice gauge theories, and examine a naive definition where gauge invariant states are viewed as elements of an extended Hilbert space which contains gauge non-invariant states as well. Working in the extended Hilbert s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2015-06, Vol.2015 (6), p.1-29, Article 187
Hauptverfasser: Aoki, Sinya, Iritani, Takumi, Nozaki, Masahiro, Numasawa, Tokiro, Shiba, Noburo, Tasaki, Hal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 6
container_start_page 1
container_title The journal of high energy physics
container_volume 2015
creator Aoki, Sinya
Iritani, Takumi
Nozaki, Masahiro
Numasawa, Tokiro
Shiba, Noburo
Tasaki, Hal
description A bstract We focus on the issue of proper definition of entanglement entropy in lattice gauge theories, and examine a naive definition where gauge invariant states are viewed as elements of an extended Hilbert space which contains gauge non-invariant states as well. Working in the extended Hilbert space, we can define entanglement entropy associated with an arbitrary subset of links, not only for abelian but also for non-abelian theories. We then derive the associated replica formula. We also discuss the issue of gauge invariance of the entanglement entropy. In the Z N gauge theories in arbitrary space dimensions, we show that all the standard properties of the entanglement entropy, e.g. the strong subadditivity, hold in our definition. We study the entanglement entropy for special states, including the topological states for the Z N gauge theories in arbitrary dimensions. We discuss relations of our definition to other proposals.
doi_str_mv 10.1007/JHEP06(2015)187
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808052276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808052276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-dc8a97e07f9c3c2a95ea8ffe9a0c976aff65bb39fd59ca128e9a1f9ffd1ac5be3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqUws0ZiKUPoOWnieERV-VKlMsBsuc45uErtYidD_3schaFCYrp3ut97Oj1Cbik8UAA2f3tZvUM5y4AW97RiZ2RCIeNptWD8_ERfkqsQdhApymFClhubdF-Y1KiNNZ1xNnE6QdtJ27S4j2JYvDscE2OTVnadUZg0sm9w8DlvMFyTCy3bgDe_c0o-n1Yfy5d0vXl-XT6uU7UooEtrVUnOEJjmKleZ5AXKSmvkEhRnpdS6LLbbnOu64ErSrIoXqrnWNZWq2GI-JbMx9-Ddd4-hE3sTFLattOj6IGgFFRRZxsqI3v1Bd673Nn4nKItUxvNFHqn5SCnvQvCoxcGbvfRHQUEMpYqxVDGUGuNZdMDoCJG0DfqT3H8sP26iehs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708029343</pqid></control><display><type>article</type><title>On the definition of entanglement entropy in lattice gauge theories</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Aoki, Sinya ; Iritani, Takumi ; Nozaki, Masahiro ; Numasawa, Tokiro ; Shiba, Noburo ; Tasaki, Hal</creator><creatorcontrib>Aoki, Sinya ; Iritani, Takumi ; Nozaki, Masahiro ; Numasawa, Tokiro ; Shiba, Noburo ; Tasaki, Hal</creatorcontrib><description>A bstract We focus on the issue of proper definition of entanglement entropy in lattice gauge theories, and examine a naive definition where gauge invariant states are viewed as elements of an extended Hilbert space which contains gauge non-invariant states as well. Working in the extended Hilbert space, we can define entanglement entropy associated with an arbitrary subset of links, not only for abelian but also for non-abelian theories. We then derive the associated replica formula. We also discuss the issue of gauge invariance of the entanglement entropy. In the Z N gauge theories in arbitrary space dimensions, we show that all the standard properties of the entanglement entropy, e.g. the strong subadditivity, hold in our definition. We study the entanglement entropy for special states, including the topological states for the Z N gauge theories in arbitrary dimensions. We discuss relations of our definition to other proposals.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP06(2015)187</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Elementary Particles ; Entanglement ; Entropy ; Gages ; Gauge theory ; Gauges ; High energy physics ; Hilbert space ; Invariants ; Lattices ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2015-06, Vol.2015 (6), p.1-29, Article 187</ispartof><rights>The Author(s) 2015</rights><rights>SISSA, Trieste, Italy 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-dc8a97e07f9c3c2a95ea8ffe9a0c976aff65bb39fd59ca128e9a1f9ffd1ac5be3</citedby><cites>FETCH-LOGICAL-c450t-dc8a97e07f9c3c2a95ea8ffe9a0c976aff65bb39fd59ca128e9a1f9ffd1ac5be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP06(2015)187$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP06(2015)187$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Aoki, Sinya</creatorcontrib><creatorcontrib>Iritani, Takumi</creatorcontrib><creatorcontrib>Nozaki, Masahiro</creatorcontrib><creatorcontrib>Numasawa, Tokiro</creatorcontrib><creatorcontrib>Shiba, Noburo</creatorcontrib><creatorcontrib>Tasaki, Hal</creatorcontrib><title>On the definition of entanglement entropy in lattice gauge theories</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We focus on the issue of proper definition of entanglement entropy in lattice gauge theories, and examine a naive definition where gauge invariant states are viewed as elements of an extended Hilbert space which contains gauge non-invariant states as well. Working in the extended Hilbert space, we can define entanglement entropy associated with an arbitrary subset of links, not only for abelian but also for non-abelian theories. We then derive the associated replica formula. We also discuss the issue of gauge invariance of the entanglement entropy. In the Z N gauge theories in arbitrary space dimensions, we show that all the standard properties of the entanglement entropy, e.g. the strong subadditivity, hold in our definition. We study the entanglement entropy for special states, including the topological states for the Z N gauge theories in arbitrary dimensions. We discuss relations of our definition to other proposals.</description><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Gages</subject><subject>Gauge theory</subject><subject>Gauges</subject><subject>High energy physics</subject><subject>Hilbert space</subject><subject>Invariants</subject><subject>Lattices</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kL1PwzAQxS0EEqUws0ZiKUPoOWnieERV-VKlMsBsuc45uErtYidD_3schaFCYrp3ut97Oj1Cbik8UAA2f3tZvUM5y4AW97RiZ2RCIeNptWD8_ERfkqsQdhApymFClhubdF-Y1KiNNZ1xNnE6QdtJ27S4j2JYvDscE2OTVnadUZg0sm9w8DlvMFyTCy3bgDe_c0o-n1Yfy5d0vXl-XT6uU7UooEtrVUnOEJjmKleZ5AXKSmvkEhRnpdS6LLbbnOu64ErSrIoXqrnWNZWq2GI-JbMx9-Ddd4-hE3sTFLattOj6IGgFFRRZxsqI3v1Bd673Nn4nKItUxvNFHqn5SCnvQvCoxcGbvfRHQUEMpYqxVDGUGuNZdMDoCJG0DfqT3H8sP26iehs</recordid><startdate>20150626</startdate><enddate>20150626</enddate><creator>Aoki, Sinya</creator><creator>Iritani, Takumi</creator><creator>Nozaki, Masahiro</creator><creator>Numasawa, Tokiro</creator><creator>Shiba, Noburo</creator><creator>Tasaki, Hal</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150626</creationdate><title>On the definition of entanglement entropy in lattice gauge theories</title><author>Aoki, Sinya ; Iritani, Takumi ; Nozaki, Masahiro ; Numasawa, Tokiro ; Shiba, Noburo ; Tasaki, Hal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-dc8a97e07f9c3c2a95ea8ffe9a0c976aff65bb39fd59ca128e9a1f9ffd1ac5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Gages</topic><topic>Gauge theory</topic><topic>Gauges</topic><topic>High energy physics</topic><topic>Hilbert space</topic><topic>Invariants</topic><topic>Lattices</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoki, Sinya</creatorcontrib><creatorcontrib>Iritani, Takumi</creatorcontrib><creatorcontrib>Nozaki, Masahiro</creatorcontrib><creatorcontrib>Numasawa, Tokiro</creatorcontrib><creatorcontrib>Shiba, Noburo</creatorcontrib><creatorcontrib>Tasaki, Hal</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoki, Sinya</au><au>Iritani, Takumi</au><au>Nozaki, Masahiro</au><au>Numasawa, Tokiro</au><au>Shiba, Noburo</au><au>Tasaki, Hal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the definition of entanglement entropy in lattice gauge theories</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2015-06-26</date><risdate>2015</risdate><volume>2015</volume><issue>6</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><artnum>187</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We focus on the issue of proper definition of entanglement entropy in lattice gauge theories, and examine a naive definition where gauge invariant states are viewed as elements of an extended Hilbert space which contains gauge non-invariant states as well. Working in the extended Hilbert space, we can define entanglement entropy associated with an arbitrary subset of links, not only for abelian but also for non-abelian theories. We then derive the associated replica formula. We also discuss the issue of gauge invariance of the entanglement entropy. In the Z N gauge theories in arbitrary space dimensions, we show that all the standard properties of the entanglement entropy, e.g. the strong subadditivity, hold in our definition. We study the entanglement entropy for special states, including the topological states for the Z N gauge theories in arbitrary dimensions. We discuss relations of our definition to other proposals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP06(2015)187</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2015-06, Vol.2015 (6), p.1-29, Article 187
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1808052276
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects Classical and Quantum Gravitation
Elementary Particles
Entanglement
Entropy
Gages
Gauge theory
Gauges
High energy physics
Hilbert space
Invariants
Lattices
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
title On the definition of entanglement entropy in lattice gauge theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T07%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20definition%20of%20entanglement%20entropy%20in%20lattice%20gauge%20theories&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Aoki,%20Sinya&rft.date=2015-06-26&rft.volume=2015&rft.issue=6&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.artnum=187&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP06(2015)187&rft_dat=%3Cproquest_cross%3E1808052276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708029343&rft_id=info:pmid/&rfr_iscdi=true