Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF

We present evidence of resonant wave‐wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework's (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2016-03, Vol.121 (3), p.2033-2045
Hauptverfasser: Ellington, S. M., Moldwin, M. B., Liemohn, M. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2045
container_issue 3
container_start_page 2033
container_title Journal of geophysical research. Space physics
container_volume 121
creator Ellington, S. M.
Moldwin, M. B.
Liemohn, M. W.
description We present evidence of resonant wave‐wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework's (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fluctuations. Using in situ, stationary point measurements of the radial electric field along the 1500 LT meridian, we show that SWMF reproduces a multiharmonic, continuous distribution of FLRs exemplified by 180° phase reversals and amplitude peaks across the resonant L shells. By linearly increasing the amplitude of the dynamic pressure fluctuations in time, we observe a commensurate increase in the amplitude of the radial electric and azimuthal magnetic field fluctuations, which is consistent with the solar wind driver being the dominant source of the fast mode energy. While we find no discernible local time changes in the FLR frequencies despite large‐scale, monotonic variations in the dayside equatorial mass density, in selectively sampling resonant points and examining spectral resonance widths, we observe significant radial, harmonic, and time‐dependent local time asymmetries in the radial electric field amplitudes. A weak but persistent local time asymmetry exists in measures of the estimated coupling efficiency between the fast mode and toroidal wave fields, which exhibits a radial dependence consistent with the coupling strength examined by Mann et al. (1999) and Zhu and Kivelson (1988). We discuss internal structural mechanisms and additional external energy sources that may account for these asymmetries as we find that local time variations in the strength of the compressional driver are not the predominant source of the FLR amplitude asymmetries. These include resonant mode coupling of observed Kelvin‐Helmholtz surface wave generated Pc5 band ultralow frequency pulsations, local time differences in local ionospheric dampening rates, and variations in azimuthal mode number, which may impact the partitioning of spectral energy between the toroidal and poloidal wave modes. Key Points Demonstrate ability of SWMF to produce FLRs Show local time asymmetries in FLR amplitudes Suggest plausible mechanisms for FLR amplitude asymmetries
doi_str_mv 10.1002/2015JA021920
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808050297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808050297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4117-7a881bc5b297cc9504db113aa0c89a38c409210f5281061d4c76eec9a3ef2de83</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuBFFCzamz8g4MWD1Znsppt4K2KrpSL4gcclzc7WlN1NTbZI_70pVRAPOpcMeR8GhkmSE4QLBOCXHFBMR8BRcdhLehyHaqAy4PvffSrhMOmHsIRYMn6h6CV65oyuWWcbYjpsmoY6bykw3Zasc97ZMqaVpbpktW2JeQqu1a2hcMUmtZvHtNGLljoXVm_krWGNKynSBbMte3q9Hx8nB5WuA_W_3qPkZXzzfH07mD1M7q5Hs4HJEPNBrqXEuRFzrnJjlICsnCOmWoORSqfSZKA4QiW4RBhimZl8SGRiRBUvSaZHydlu7sq79zWFrmhsMFTXuiW3DgVKkCAgjv-f5jJXkotsGOnpL7p0a9_GRbYqyxEFV1Gd75TxLgRPVbHyttF-UyAU2-sUP68TebrjH7amzZ-2mE4eR4JnmKefnOyOpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784711529</pqid></control><display><type>article</type><title>Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Ellington, S. M. ; Moldwin, M. B. ; Liemohn, M. W.</creator><creatorcontrib>Ellington, S. M. ; Moldwin, M. B. ; Liemohn, M. W.</creatorcontrib><description>We present evidence of resonant wave‐wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework's (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fluctuations. Using in situ, stationary point measurements of the radial electric field along the 1500 LT meridian, we show that SWMF reproduces a multiharmonic, continuous distribution of FLRs exemplified by 180° phase reversals and amplitude peaks across the resonant L shells. By linearly increasing the amplitude of the dynamic pressure fluctuations in time, we observe a commensurate increase in the amplitude of the radial electric and azimuthal magnetic field fluctuations, which is consistent with the solar wind driver being the dominant source of the fast mode energy. While we find no discernible local time changes in the FLR frequencies despite large‐scale, monotonic variations in the dayside equatorial mass density, in selectively sampling resonant points and examining spectral resonance widths, we observe significant radial, harmonic, and time‐dependent local time asymmetries in the radial electric field amplitudes. A weak but persistent local time asymmetry exists in measures of the estimated coupling efficiency between the fast mode and toroidal wave fields, which exhibits a radial dependence consistent with the coupling strength examined by Mann et al. (1999) and Zhu and Kivelson (1988). We discuss internal structural mechanisms and additional external energy sources that may account for these asymmetries as we find that local time variations in the strength of the compressional driver are not the predominant source of the FLR amplitude asymmetries. These include resonant mode coupling of observed Kelvin‐Helmholtz surface wave generated Pc5 band ultralow frequency pulsations, local time differences in local ionospheric dampening rates, and variations in azimuthal mode number, which may impact the partitioning of spectral energy between the toroidal and poloidal wave modes. Key Points Demonstrate ability of SWMF to produce FLRs Show local time asymmetries in FLR amplitudes Suggest plausible mechanisms for FLR amplitude asymmetries</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2015JA021920</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Amplitudes ; Asymmetry ; Coupling ; Dynamic pressure ; Electric fields ; Energy sources ; field line resonances ; Fluctuation ; Fluctuations ; global MHD modeling ; local time asymmetries ; Magnetic fields ; Modelling ; Resonance ; Spectra ; SWMF</subject><ispartof>Journal of geophysical research. Space physics, 2016-03, Vol.121 (3), p.2033-2045</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4117-7a881bc5b297cc9504db113aa0c89a38c409210f5281061d4c76eec9a3ef2de83</citedby><cites>FETCH-LOGICAL-c4117-7a881bc5b297cc9504db113aa0c89a38c409210f5281061d4c76eec9a3ef2de83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JA021920$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JA021920$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Ellington, S. M.</creatorcontrib><creatorcontrib>Moldwin, M. B.</creatorcontrib><creatorcontrib>Liemohn, M. W.</creatorcontrib><title>Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF</title><title>Journal of geophysical research. Space physics</title><description>We present evidence of resonant wave‐wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework's (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fluctuations. Using in situ, stationary point measurements of the radial electric field along the 1500 LT meridian, we show that SWMF reproduces a multiharmonic, continuous distribution of FLRs exemplified by 180° phase reversals and amplitude peaks across the resonant L shells. By linearly increasing the amplitude of the dynamic pressure fluctuations in time, we observe a commensurate increase in the amplitude of the radial electric and azimuthal magnetic field fluctuations, which is consistent with the solar wind driver being the dominant source of the fast mode energy. While we find no discernible local time changes in the FLR frequencies despite large‐scale, monotonic variations in the dayside equatorial mass density, in selectively sampling resonant points and examining spectral resonance widths, we observe significant radial, harmonic, and time‐dependent local time asymmetries in the radial electric field amplitudes. A weak but persistent local time asymmetry exists in measures of the estimated coupling efficiency between the fast mode and toroidal wave fields, which exhibits a radial dependence consistent with the coupling strength examined by Mann et al. (1999) and Zhu and Kivelson (1988). We discuss internal structural mechanisms and additional external energy sources that may account for these asymmetries as we find that local time variations in the strength of the compressional driver are not the predominant source of the FLR amplitude asymmetries. These include resonant mode coupling of observed Kelvin‐Helmholtz surface wave generated Pc5 band ultralow frequency pulsations, local time differences in local ionospheric dampening rates, and variations in azimuthal mode number, which may impact the partitioning of spectral energy between the toroidal and poloidal wave modes. Key Points Demonstrate ability of SWMF to produce FLRs Show local time asymmetries in FLR amplitudes Suggest plausible mechanisms for FLR amplitude asymmetries</description><subject>Amplitudes</subject><subject>Asymmetry</subject><subject>Coupling</subject><subject>Dynamic pressure</subject><subject>Electric fields</subject><subject>Energy sources</subject><subject>field line resonances</subject><subject>Fluctuation</subject><subject>Fluctuations</subject><subject>global MHD modeling</subject><subject>local time asymmetries</subject><subject>Magnetic fields</subject><subject>Modelling</subject><subject>Resonance</subject><subject>Spectra</subject><subject>SWMF</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LAzEQBuBFFCzamz8g4MWD1Znsppt4K2KrpSL4gcclzc7WlN1NTbZI_70pVRAPOpcMeR8GhkmSE4QLBOCXHFBMR8BRcdhLehyHaqAy4PvffSrhMOmHsIRYMn6h6CV65oyuWWcbYjpsmoY6bykw3Zasc97ZMqaVpbpktW2JeQqu1a2hcMUmtZvHtNGLljoXVm_krWGNKynSBbMte3q9Hx8nB5WuA_W_3qPkZXzzfH07mD1M7q5Hs4HJEPNBrqXEuRFzrnJjlICsnCOmWoORSqfSZKA4QiW4RBhimZl8SGRiRBUvSaZHydlu7sq79zWFrmhsMFTXuiW3DgVKkCAgjv-f5jJXkotsGOnpL7p0a9_GRbYqyxEFV1Gd75TxLgRPVbHyttF-UyAU2-sUP68TebrjH7amzZ-2mE4eR4JnmKefnOyOpg</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Ellington, S. M.</creator><creator>Moldwin, M. B.</creator><creator>Liemohn, M. W.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201603</creationdate><title>Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF</title><author>Ellington, S. M. ; Moldwin, M. B. ; Liemohn, M. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4117-7a881bc5b297cc9504db113aa0c89a38c409210f5281061d4c76eec9a3ef2de83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplitudes</topic><topic>Asymmetry</topic><topic>Coupling</topic><topic>Dynamic pressure</topic><topic>Electric fields</topic><topic>Energy sources</topic><topic>field line resonances</topic><topic>Fluctuation</topic><topic>Fluctuations</topic><topic>global MHD modeling</topic><topic>local time asymmetries</topic><topic>Magnetic fields</topic><topic>Modelling</topic><topic>Resonance</topic><topic>Spectra</topic><topic>SWMF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellington, S. M.</creatorcontrib><creatorcontrib>Moldwin, M. B.</creatorcontrib><creatorcontrib>Liemohn, M. W.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellington, S. M.</au><au>Moldwin, M. B.</au><au>Liemohn, M. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2016-03</date><risdate>2016</risdate><volume>121</volume><issue>3</issue><spage>2033</spage><epage>2045</epage><pages>2033-2045</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>We present evidence of resonant wave‐wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework's (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fluctuations. Using in situ, stationary point measurements of the radial electric field along the 1500 LT meridian, we show that SWMF reproduces a multiharmonic, continuous distribution of FLRs exemplified by 180° phase reversals and amplitude peaks across the resonant L shells. By linearly increasing the amplitude of the dynamic pressure fluctuations in time, we observe a commensurate increase in the amplitude of the radial electric and azimuthal magnetic field fluctuations, which is consistent with the solar wind driver being the dominant source of the fast mode energy. While we find no discernible local time changes in the FLR frequencies despite large‐scale, monotonic variations in the dayside equatorial mass density, in selectively sampling resonant points and examining spectral resonance widths, we observe significant radial, harmonic, and time‐dependent local time asymmetries in the radial electric field amplitudes. A weak but persistent local time asymmetry exists in measures of the estimated coupling efficiency between the fast mode and toroidal wave fields, which exhibits a radial dependence consistent with the coupling strength examined by Mann et al. (1999) and Zhu and Kivelson (1988). We discuss internal structural mechanisms and additional external energy sources that may account for these asymmetries as we find that local time variations in the strength of the compressional driver are not the predominant source of the FLR amplitude asymmetries. These include resonant mode coupling of observed Kelvin‐Helmholtz surface wave generated Pc5 band ultralow frequency pulsations, local time differences in local ionospheric dampening rates, and variations in azimuthal mode number, which may impact the partitioning of spectral energy between the toroidal and poloidal wave modes. Key Points Demonstrate ability of SWMF to produce FLRs Show local time asymmetries in FLR amplitudes Suggest plausible mechanisms for FLR amplitude asymmetries</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JA021920</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2016-03, Vol.121 (3), p.2033-2045
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_miscellaneous_1808050297
source Wiley Online Library - AutoHoldings Journals; Wiley Online Library (Open Access Collection)
subjects Amplitudes
Asymmetry
Coupling
Dynamic pressure
Electric fields
Energy sources
field line resonances
Fluctuation
Fluctuations
global MHD modeling
local time asymmetries
Magnetic fields
Modelling
Resonance
Spectra
SWMF
title Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20time%20asymmetries%20and%20toroidal%20field%20line%20resonances:%20Global%20magnetospheric%20modeling%20in%20SWMF&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Ellington,%20S.%20M.&rft.date=2016-03&rft.volume=121&rft.issue=3&rft.spage=2033&rft.epage=2045&rft.pages=2033-2045&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2015JA021920&rft_dat=%3Cproquest_cross%3E1808050297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784711529&rft_id=info:pmid/&rfr_iscdi=true