Label-Free Real-Time Microarray Imaging of Cancer Protein–Protein Interactions and Their Inhibition by Small Molecules

A rapid optical microarray imaging approach for anticancer drug screening at specific cancer protein–protein interface targets with binding kinetics and validation by a mass sensor is reported for the first time. Surface plasmon resonance imager (SPRi) demonstrated a 3.5-fold greater specificity for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2016-03, Vol.88 (6), p.3130-3135
Hauptverfasser: Walgama, Charuksha, Al Mubarak, Zainab H, Zhang, Bing, Akinwale, Mayowa, Pathiranage, Anuruddha, Deng, Junpeng, Berlin, K. Darrell, Benbrook, Doris M, Krishnan, Sadagopan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A rapid optical microarray imaging approach for anticancer drug screening at specific cancer protein–protein interface targets with binding kinetics and validation by a mass sensor is reported for the first time. Surface plasmon resonance imager (SPRi) demonstrated a 3.5-fold greater specificity for interactions between murine double minute 2 protein (MDM2) and wild-type p53 over a nonspecific p53 mutant in a real-time microfluidic analysis. Significant percentage reflectivity changes (Δ%R) in the SPRi signals and molecular-level mass changes were detected for both the MDM2–p53 interaction and its inhibition by a small-molecule Nutlin-3 drug analogue known for its anticancer property. We additionally demonstrate that synthetic, inexpensive binding domains of interacting cancer proteins are sufficient to screen anticancer drugs by an array-based SPRi technique with excellent specificity and sensitivity. This imaging array, combined with a mass sensor, can be used to study quantitatively any protein–protein interaction and screen for small molecules with binding and potency evaluations.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.5b04234