Unraveling the Complexities of Life Sciences Data
The life sciences have entered into the realm of big data and data-enabled science, where data can either empower or overwhelm. These data bring the challenges of the 5 Vs of big data: volume, veracity, velocity, variety, and value. Both independently and through our involvement with DELSA Global (D...
Gespeichert in:
Veröffentlicht in: | Big data 2013-03, Vol.1 (1), p.42-50 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 1 |
container_start_page | 42 |
container_title | Big data |
container_volume | 1 |
creator | Higdon, Roger Haynes, Winston Stanberry, Larissa Stewart, Elizabeth Yandl, Gregory Howard, Chris Broomall, William Kolker, Natali Kolker, Eugene |
description | The life sciences have entered into the realm of big data and data-enabled science, where data can either empower or overwhelm. These data bring the challenges of the 5 Vs of big data: volume, veracity, velocity, variety, and value. Both independently and through our involvement with DELSA Global (Data-Enabled Life Sciences Alliance, DELSAglobal.org), the Kolker Lab ( kolkerlab.org ) is creating partnerships that identify data challenges and solve community needs. We specialize in solutions to complex biological data challenges, as exemplified by the community resource of MOPED (Model Organism Protein Expression Database, MOPED.proteinspire.org ) and the analysis pipeline of SPIRE (Systematic Protein Investigative Research Environment, PROTEINSPIRE.org ). Our collaborative work extends into the computationally intensive tasks of analysis and visualization of millions of protein sequences through innovative implementations of sequence alignment algorithms and creation of the Protein Sequence Universe tool (PSU). Pushing into the future together with our collaborators, our lab is pursuing integration of multi-omics data and exploration of biological pathways, as well as assigning function to proteins and porting solutions to the cloud. Big data have come to the life sciences; discovering the knowledge in the data will bring breakthroughs and benefits. |
doi_str_mv | 10.1089/big.2012.1505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1807276187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1807276187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4c1a696b5abaf6264eb289c84102013304460e49dd059d02948c12b0ca6dbf5b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMottQevcoevWydZLPJ5ij1EwoetOAtJNnZGtmPutkV_femtHYuMwwPLy8PIZcUFhQKdWP9ZsGAsgXNIT8hU0aFTAWX76fHW9AJmYfwCXGkVLyg52TCJOcSMjkldN325htr326S4QOTZddsa_zxg8eQdFWy8hUmr85j6-LjzgzmgpxVpg44P-wZWT_cvy2f0tXL4_PydpU6prIh5Y4aoYTNjTWVYIKjZYVyBacQG2cZcC4AuSpLyFUJLDZzlFlwRpS2ym02I9f73G3ffY0YBt344LCuTYvdGDQtQDIpaCEjmu5R13ch9Fjpbe8b0_9qCnonSkdReidK70RF_uoQPdoGyyP9ryX7A1oYYWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807276187</pqid></control><display><type>article</type><title>Unraveling the Complexities of Life Sciences Data</title><source>Alma/SFX Local Collection</source><creator>Higdon, Roger ; Haynes, Winston ; Stanberry, Larissa ; Stewart, Elizabeth ; Yandl, Gregory ; Howard, Chris ; Broomall, William ; Kolker, Natali ; Kolker, Eugene</creator><creatorcontrib>Higdon, Roger ; Haynes, Winston ; Stanberry, Larissa ; Stewart, Elizabeth ; Yandl, Gregory ; Howard, Chris ; Broomall, William ; Kolker, Natali ; Kolker, Eugene</creatorcontrib><description>The life sciences have entered into the realm of big data and data-enabled science, where data can either empower or overwhelm. These data bring the challenges of the 5 Vs of big data: volume, veracity, velocity, variety, and value. Both independently and through our involvement with DELSA Global (Data-Enabled Life Sciences Alliance, DELSAglobal.org), the Kolker Lab ( kolkerlab.org ) is creating partnerships that identify data challenges and solve community needs. We specialize in solutions to complex biological data challenges, as exemplified by the community resource of MOPED (Model Organism Protein Expression Database, MOPED.proteinspire.org ) and the analysis pipeline of SPIRE (Systematic Protein Investigative Research Environment, PROTEINSPIRE.org ). Our collaborative work extends into the computationally intensive tasks of analysis and visualization of millions of protein sequences through innovative implementations of sequence alignment algorithms and creation of the Protein Sequence Universe tool (PSU). Pushing into the future together with our collaborators, our lab is pursuing integration of multi-omics data and exploration of biological pathways, as well as assigning function to proteins and porting solutions to the cloud. Big data have come to the life sciences; discovering the knowledge in the data will bring breakthroughs and benefits.</description><identifier>ISSN: 2167-6461</identifier><identifier>EISSN: 2167-647X</identifier><identifier>DOI: 10.1089/big.2012.1505</identifier><identifier>PMID: 27447037</identifier><language>eng</language><publisher>United States</publisher><ispartof>Big data, 2013-03, Vol.1 (1), p.42-50</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4c1a696b5abaf6264eb289c84102013304460e49dd059d02948c12b0ca6dbf5b3</citedby><cites>FETCH-LOGICAL-c293t-4c1a696b5abaf6264eb289c84102013304460e49dd059d02948c12b0ca6dbf5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27447037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Higdon, Roger</creatorcontrib><creatorcontrib>Haynes, Winston</creatorcontrib><creatorcontrib>Stanberry, Larissa</creatorcontrib><creatorcontrib>Stewart, Elizabeth</creatorcontrib><creatorcontrib>Yandl, Gregory</creatorcontrib><creatorcontrib>Howard, Chris</creatorcontrib><creatorcontrib>Broomall, William</creatorcontrib><creatorcontrib>Kolker, Natali</creatorcontrib><creatorcontrib>Kolker, Eugene</creatorcontrib><title>Unraveling the Complexities of Life Sciences Data</title><title>Big data</title><addtitle>Big Data</addtitle><description>The life sciences have entered into the realm of big data and data-enabled science, where data can either empower or overwhelm. These data bring the challenges of the 5 Vs of big data: volume, veracity, velocity, variety, and value. Both independently and through our involvement with DELSA Global (Data-Enabled Life Sciences Alliance, DELSAglobal.org), the Kolker Lab ( kolkerlab.org ) is creating partnerships that identify data challenges and solve community needs. We specialize in solutions to complex biological data challenges, as exemplified by the community resource of MOPED (Model Organism Protein Expression Database, MOPED.proteinspire.org ) and the analysis pipeline of SPIRE (Systematic Protein Investigative Research Environment, PROTEINSPIRE.org ). Our collaborative work extends into the computationally intensive tasks of analysis and visualization of millions of protein sequences through innovative implementations of sequence alignment algorithms and creation of the Protein Sequence Universe tool (PSU). Pushing into the future together with our collaborators, our lab is pursuing integration of multi-omics data and exploration of biological pathways, as well as assigning function to proteins and porting solutions to the cloud. Big data have come to the life sciences; discovering the knowledge in the data will bring breakthroughs and benefits.</description><issn>2167-6461</issn><issn>2167-647X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMottQevcoevWydZLPJ5ij1EwoetOAtJNnZGtmPutkV_femtHYuMwwPLy8PIZcUFhQKdWP9ZsGAsgXNIT8hU0aFTAWX76fHW9AJmYfwCXGkVLyg52TCJOcSMjkldN325htr326S4QOTZddsa_zxg8eQdFWy8hUmr85j6-LjzgzmgpxVpg44P-wZWT_cvy2f0tXL4_PydpU6prIh5Y4aoYTNjTWVYIKjZYVyBacQG2cZcC4AuSpLyFUJLDZzlFlwRpS2ym02I9f73G3ffY0YBt344LCuTYvdGDQtQDIpaCEjmu5R13ch9Fjpbe8b0_9qCnonSkdReidK70RF_uoQPdoGyyP9ryX7A1oYYWo</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Higdon, Roger</creator><creator>Haynes, Winston</creator><creator>Stanberry, Larissa</creator><creator>Stewart, Elizabeth</creator><creator>Yandl, Gregory</creator><creator>Howard, Chris</creator><creator>Broomall, William</creator><creator>Kolker, Natali</creator><creator>Kolker, Eugene</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201303</creationdate><title>Unraveling the Complexities of Life Sciences Data</title><author>Higdon, Roger ; Haynes, Winston ; Stanberry, Larissa ; Stewart, Elizabeth ; Yandl, Gregory ; Howard, Chris ; Broomall, William ; Kolker, Natali ; Kolker, Eugene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4c1a696b5abaf6264eb289c84102013304460e49dd059d02948c12b0ca6dbf5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higdon, Roger</creatorcontrib><creatorcontrib>Haynes, Winston</creatorcontrib><creatorcontrib>Stanberry, Larissa</creatorcontrib><creatorcontrib>Stewart, Elizabeth</creatorcontrib><creatorcontrib>Yandl, Gregory</creatorcontrib><creatorcontrib>Howard, Chris</creatorcontrib><creatorcontrib>Broomall, William</creatorcontrib><creatorcontrib>Kolker, Natali</creatorcontrib><creatorcontrib>Kolker, Eugene</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higdon, Roger</au><au>Haynes, Winston</au><au>Stanberry, Larissa</au><au>Stewart, Elizabeth</au><au>Yandl, Gregory</au><au>Howard, Chris</au><au>Broomall, William</au><au>Kolker, Natali</au><au>Kolker, Eugene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Complexities of Life Sciences Data</atitle><jtitle>Big data</jtitle><addtitle>Big Data</addtitle><date>2013-03</date><risdate>2013</risdate><volume>1</volume><issue>1</issue><spage>42</spage><epage>50</epage><pages>42-50</pages><issn>2167-6461</issn><eissn>2167-647X</eissn><abstract>The life sciences have entered into the realm of big data and data-enabled science, where data can either empower or overwhelm. These data bring the challenges of the 5 Vs of big data: volume, veracity, velocity, variety, and value. Both independently and through our involvement with DELSA Global (Data-Enabled Life Sciences Alliance, DELSAglobal.org), the Kolker Lab ( kolkerlab.org ) is creating partnerships that identify data challenges and solve community needs. We specialize in solutions to complex biological data challenges, as exemplified by the community resource of MOPED (Model Organism Protein Expression Database, MOPED.proteinspire.org ) and the analysis pipeline of SPIRE (Systematic Protein Investigative Research Environment, PROTEINSPIRE.org ). Our collaborative work extends into the computationally intensive tasks of analysis and visualization of millions of protein sequences through innovative implementations of sequence alignment algorithms and creation of the Protein Sequence Universe tool (PSU). Pushing into the future together with our collaborators, our lab is pursuing integration of multi-omics data and exploration of biological pathways, as well as assigning function to proteins and porting solutions to the cloud. Big data have come to the life sciences; discovering the knowledge in the data will bring breakthroughs and benefits.</abstract><cop>United States</cop><pmid>27447037</pmid><doi>10.1089/big.2012.1505</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2167-6461 |
ispartof | Big data, 2013-03, Vol.1 (1), p.42-50 |
issn | 2167-6461 2167-647X |
language | eng |
recordid | cdi_proquest_miscellaneous_1807276187 |
source | Alma/SFX Local Collection |
title | Unraveling the Complexities of Life Sciences Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Complexities%20of%20Life%20Sciences%20Data&rft.jtitle=Big%20data&rft.au=Higdon,%20Roger&rft.date=2013-03&rft.volume=1&rft.issue=1&rft.spage=42&rft.epage=50&rft.pages=42-50&rft.issn=2167-6461&rft.eissn=2167-647X&rft_id=info:doi/10.1089/big.2012.1505&rft_dat=%3Cproquest_cross%3E1807276187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807276187&rft_id=info:pmid/27447037&rfr_iscdi=true |