Maximum-Intensity-Projection and Computer-Aided-Detection Algorithms as Stand-Alone Reader Devices in Lung Cancer Screening Using Different Dose Levels and Reconstruction Kernels

The objective of our study was to evaluate lung nodule detection rates on standard and microdose chest CT with two different computer-aided detection systems (SyngoCT-CAD, VA 20, Siemens Healthcare [CAD1]; Lung CAD, IntelliSpace Portal DX Server, Philips Healthcare [CAD2]) as well as maximum-intensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of roentgenology (1976) 2016-08, Vol.207 (2), p.282-288
Hauptverfasser: Ebner, Lukas, Roos, Justus E, Christensen, Jared D, Dobrocky, Tomas, Leidolt, Lars, Brela, Barbara, Obmann, Verena C, Joy, Sonya, Huber, Adrian, Christe, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue 2
container_start_page 282
container_title American journal of roentgenology (1976)
container_volume 207
creator Ebner, Lukas
Roos, Justus E
Christensen, Jared D
Dobrocky, Tomas
Leidolt, Lars
Brela, Barbara
Obmann, Verena C
Joy, Sonya
Huber, Adrian
Christe, Andreas
description The objective of our study was to evaluate lung nodule detection rates on standard and microdose chest CT with two different computer-aided detection systems (SyngoCT-CAD, VA 20, Siemens Healthcare [CAD1]; Lung CAD, IntelliSpace Portal DX Server, Philips Healthcare [CAD2]) as well as maximum-intensity-projection (MIP) images. We also assessed the impact of different reconstruction kernels. Standard and microdose CT using three reconstruction kernels (i30, i50, i70) was performed with an anthropomorphic chest phantom. We placed 133 ground-glass and 133 solid nodules (diameters of 5 mm, 8 mm, 10 mm, and 12 mm) in 55 phantoms. Four blinded readers evaluated the MIP images; one recorded the results of CAD1 and CAD2. Sensitivities for CAD and MIP nodule detection on standard dose and microdose CT were calculated for each reconstruction kernel. Dose for microdose CT was significantly less than that for standard-dose CT (0.1323 mSv vs 1.65 mSv; p < 0.0001). CAD1 delivered superior results compared with CAD2 for standard-dose and microdose CT (p < 0.0001). At microdose level, the best stand-alone sensitivity (97.6%) was comparable with CAD1 sensitivity (96.0%; p = 0.36; both with i30 reconstruction kernel). Pooled sensitivities for all nodules, doses, and reconstruction kernels on CAD1 ranged from 88.9% to 97.3% versus 49.6% to 73.9% for CAD2. The best sensitivity was achieved with standard-dose CT, i50 kernel, and CAD1 (97.3%) versus 96% with microdose CT, i30 or i50 kernel, and CAD1. MIP images and CAD1 had similar performance at both dose levels (p = 0.1313 and p = 0.48). Submillisievert CT is feasible for detecting solid and ground-glass nodules that require soft-tissue kernels for MIP and CAD systems to achieve acceptable sensitivities. MIP reconstructions remain a valuable adjunct to the interpretation of chest CT for increasing sensitivity and have the advantage of significantly lower false-positive rates.
doi_str_mv 10.2214/AJR.15.15588
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1806641164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1806641164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-3edace6eee3578d71b702f2da7f87fd2919c7f4e7043f6795af059a1a5689c263</originalsourceid><addsrcrecordid>eNo9kUFv1DAQha2qiC6FG2fkYw-42IljJ8dot0BhEWhLpd4i1x4XV4m9tZ0V_Vv8QtzugjSa0cz79ObwEHrL6HlVMf6h_7I5Z02ppm2P0II1XJCacXaMFrQWjLS0vjlBr1K6p5TKtpMv0UklK94xyRfozzf1203zRC59Bp9cfiQ_YrgHnV3wWHmDl2Hazhki6Z0BQ1aQD2I_3oXo8q8pYZXwVS4w6cfgAW9AGYh4BTunIWHn8Xr2d3ipvC7nKx0BvCuH6_TUV85aiOAzXoUEeA07GNPz6w3o4FOO8_7hV4i-SK_RC6vGBG8O8xRdf7z4ufxM1t8_XS77NdF1IzOpwSgNAgDK2hrJbiWtbGWUtK20pupYp6XlICmvrZBdoyxtOsVUI9pOV6I-RWd7320MDzOkPEwuaRhH5SHMaWAtFYIzJnhB3-9RHUNKEeywjW5S8XFgdHhKaSgpDawZnlMq-LuD83w7gfkP_4ul_guWypCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806641164</pqid></control><display><type>article</type><title>Maximum-Intensity-Projection and Computer-Aided-Detection Algorithms as Stand-Alone Reader Devices in Lung Cancer Screening Using Different Dose Levels and Reconstruction Kernels</title><source>American Roentgen Ray Society</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Ebner, Lukas ; Roos, Justus E ; Christensen, Jared D ; Dobrocky, Tomas ; Leidolt, Lars ; Brela, Barbara ; Obmann, Verena C ; Joy, Sonya ; Huber, Adrian ; Christe, Andreas</creator><creatorcontrib>Ebner, Lukas ; Roos, Justus E ; Christensen, Jared D ; Dobrocky, Tomas ; Leidolt, Lars ; Brela, Barbara ; Obmann, Verena C ; Joy, Sonya ; Huber, Adrian ; Christe, Andreas</creatorcontrib><description>The objective of our study was to evaluate lung nodule detection rates on standard and microdose chest CT with two different computer-aided detection systems (SyngoCT-CAD, VA 20, Siemens Healthcare [CAD1]; Lung CAD, IntelliSpace Portal DX Server, Philips Healthcare [CAD2]) as well as maximum-intensity-projection (MIP) images. We also assessed the impact of different reconstruction kernels. Standard and microdose CT using three reconstruction kernels (i30, i50, i70) was performed with an anthropomorphic chest phantom. We placed 133 ground-glass and 133 solid nodules (diameters of 5 mm, 8 mm, 10 mm, and 12 mm) in 55 phantoms. Four blinded readers evaluated the MIP images; one recorded the results of CAD1 and CAD2. Sensitivities for CAD and MIP nodule detection on standard dose and microdose CT were calculated for each reconstruction kernel. Dose for microdose CT was significantly less than that for standard-dose CT (0.1323 mSv vs 1.65 mSv; p &lt; 0.0001). CAD1 delivered superior results compared with CAD2 for standard-dose and microdose CT (p &lt; 0.0001). At microdose level, the best stand-alone sensitivity (97.6%) was comparable with CAD1 sensitivity (96.0%; p = 0.36; both with i30 reconstruction kernel). Pooled sensitivities for all nodules, doses, and reconstruction kernels on CAD1 ranged from 88.9% to 97.3% versus 49.6% to 73.9% for CAD2. The best sensitivity was achieved with standard-dose CT, i50 kernel, and CAD1 (97.3%) versus 96% with microdose CT, i30 or i50 kernel, and CAD1. MIP images and CAD1 had similar performance at both dose levels (p = 0.1313 and p = 0.48). Submillisievert CT is feasible for detecting solid and ground-glass nodules that require soft-tissue kernels for MIP and CAD systems to achieve acceptable sensitivities. MIP reconstructions remain a valuable adjunct to the interpretation of chest CT for increasing sensitivity and have the advantage of significantly lower false-positive rates.</description><identifier>ISSN: 0361-803X</identifier><identifier>EISSN: 1546-3141</identifier><identifier>DOI: 10.2214/AJR.15.15588</identifier><identifier>PMID: 27249174</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Early Detection of Cancer ; Humans ; Lung Neoplasms - diagnostic imaging ; Phantoms, Imaging ; Radiation Dosage ; Radiographic Image Interpretation, Computer-Assisted - methods ; Sensitivity and Specificity ; Solitary Pulmonary Nodule - diagnostic imaging ; Tomography, X-Ray Computed - methods</subject><ispartof>American journal of roentgenology (1976), 2016-08, Vol.207 (2), p.282-288</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-3edace6eee3578d71b702f2da7f87fd2919c7f4e7043f6795af059a1a5689c263</citedby><cites>FETCH-LOGICAL-c357t-3edace6eee3578d71b702f2da7f87fd2919c7f4e7043f6795af059a1a5689c263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4106,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27249174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ebner, Lukas</creatorcontrib><creatorcontrib>Roos, Justus E</creatorcontrib><creatorcontrib>Christensen, Jared D</creatorcontrib><creatorcontrib>Dobrocky, Tomas</creatorcontrib><creatorcontrib>Leidolt, Lars</creatorcontrib><creatorcontrib>Brela, Barbara</creatorcontrib><creatorcontrib>Obmann, Verena C</creatorcontrib><creatorcontrib>Joy, Sonya</creatorcontrib><creatorcontrib>Huber, Adrian</creatorcontrib><creatorcontrib>Christe, Andreas</creatorcontrib><title>Maximum-Intensity-Projection and Computer-Aided-Detection Algorithms as Stand-Alone Reader Devices in Lung Cancer Screening Using Different Dose Levels and Reconstruction Kernels</title><title>American journal of roentgenology (1976)</title><addtitle>AJR Am J Roentgenol</addtitle><description>The objective of our study was to evaluate lung nodule detection rates on standard and microdose chest CT with two different computer-aided detection systems (SyngoCT-CAD, VA 20, Siemens Healthcare [CAD1]; Lung CAD, IntelliSpace Portal DX Server, Philips Healthcare [CAD2]) as well as maximum-intensity-projection (MIP) images. We also assessed the impact of different reconstruction kernels. Standard and microdose CT using three reconstruction kernels (i30, i50, i70) was performed with an anthropomorphic chest phantom. We placed 133 ground-glass and 133 solid nodules (diameters of 5 mm, 8 mm, 10 mm, and 12 mm) in 55 phantoms. Four blinded readers evaluated the MIP images; one recorded the results of CAD1 and CAD2. Sensitivities for CAD and MIP nodule detection on standard dose and microdose CT were calculated for each reconstruction kernel. Dose for microdose CT was significantly less than that for standard-dose CT (0.1323 mSv vs 1.65 mSv; p &lt; 0.0001). CAD1 delivered superior results compared with CAD2 for standard-dose and microdose CT (p &lt; 0.0001). At microdose level, the best stand-alone sensitivity (97.6%) was comparable with CAD1 sensitivity (96.0%; p = 0.36; both with i30 reconstruction kernel). Pooled sensitivities for all nodules, doses, and reconstruction kernels on CAD1 ranged from 88.9% to 97.3% versus 49.6% to 73.9% for CAD2. The best sensitivity was achieved with standard-dose CT, i50 kernel, and CAD1 (97.3%) versus 96% with microdose CT, i30 or i50 kernel, and CAD1. MIP images and CAD1 had similar performance at both dose levels (p = 0.1313 and p = 0.48). Submillisievert CT is feasible for detecting solid and ground-glass nodules that require soft-tissue kernels for MIP and CAD systems to achieve acceptable sensitivities. MIP reconstructions remain a valuable adjunct to the interpretation of chest CT for increasing sensitivity and have the advantage of significantly lower false-positive rates.</description><subject>Algorithms</subject><subject>Early Detection of Cancer</subject><subject>Humans</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Phantoms, Imaging</subject><subject>Radiation Dosage</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Sensitivity and Specificity</subject><subject>Solitary Pulmonary Nodule - diagnostic imaging</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0361-803X</issn><issn>1546-3141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kUFv1DAQha2qiC6FG2fkYw-42IljJ8dot0BhEWhLpd4i1x4XV4m9tZ0V_Vv8QtzugjSa0cz79ObwEHrL6HlVMf6h_7I5Z02ppm2P0II1XJCacXaMFrQWjLS0vjlBr1K6p5TKtpMv0UklK94xyRfozzf1203zRC59Bp9cfiQ_YrgHnV3wWHmDl2Hazhki6Z0BQ1aQD2I_3oXo8q8pYZXwVS4w6cfgAW9AGYh4BTunIWHn8Xr2d3ipvC7nKx0BvCuH6_TUV85aiOAzXoUEeA07GNPz6w3o4FOO8_7hV4i-SK_RC6vGBG8O8xRdf7z4ufxM1t8_XS77NdF1IzOpwSgNAgDK2hrJbiWtbGWUtK20pupYp6XlICmvrZBdoyxtOsVUI9pOV6I-RWd7320MDzOkPEwuaRhH5SHMaWAtFYIzJnhB3-9RHUNKEeywjW5S8XFgdHhKaSgpDawZnlMq-LuD83w7gfkP_4ul_guWypCY</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Ebner, Lukas</creator><creator>Roos, Justus E</creator><creator>Christensen, Jared D</creator><creator>Dobrocky, Tomas</creator><creator>Leidolt, Lars</creator><creator>Brela, Barbara</creator><creator>Obmann, Verena C</creator><creator>Joy, Sonya</creator><creator>Huber, Adrian</creator><creator>Christe, Andreas</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Maximum-Intensity-Projection and Computer-Aided-Detection Algorithms as Stand-Alone Reader Devices in Lung Cancer Screening Using Different Dose Levels and Reconstruction Kernels</title><author>Ebner, Lukas ; Roos, Justus E ; Christensen, Jared D ; Dobrocky, Tomas ; Leidolt, Lars ; Brela, Barbara ; Obmann, Verena C ; Joy, Sonya ; Huber, Adrian ; Christe, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-3edace6eee3578d71b702f2da7f87fd2919c7f4e7043f6795af059a1a5689c263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Early Detection of Cancer</topic><topic>Humans</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Phantoms, Imaging</topic><topic>Radiation Dosage</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Sensitivity and Specificity</topic><topic>Solitary Pulmonary Nodule - diagnostic imaging</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebner, Lukas</creatorcontrib><creatorcontrib>Roos, Justus E</creatorcontrib><creatorcontrib>Christensen, Jared D</creatorcontrib><creatorcontrib>Dobrocky, Tomas</creatorcontrib><creatorcontrib>Leidolt, Lars</creatorcontrib><creatorcontrib>Brela, Barbara</creatorcontrib><creatorcontrib>Obmann, Verena C</creatorcontrib><creatorcontrib>Joy, Sonya</creatorcontrib><creatorcontrib>Huber, Adrian</creatorcontrib><creatorcontrib>Christe, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of roentgenology (1976)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebner, Lukas</au><au>Roos, Justus E</au><au>Christensen, Jared D</au><au>Dobrocky, Tomas</au><au>Leidolt, Lars</au><au>Brela, Barbara</au><au>Obmann, Verena C</au><au>Joy, Sonya</au><au>Huber, Adrian</au><au>Christe, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum-Intensity-Projection and Computer-Aided-Detection Algorithms as Stand-Alone Reader Devices in Lung Cancer Screening Using Different Dose Levels and Reconstruction Kernels</atitle><jtitle>American journal of roentgenology (1976)</jtitle><addtitle>AJR Am J Roentgenol</addtitle><date>2016-08</date><risdate>2016</risdate><volume>207</volume><issue>2</issue><spage>282</spage><epage>288</epage><pages>282-288</pages><issn>0361-803X</issn><eissn>1546-3141</eissn><abstract>The objective of our study was to evaluate lung nodule detection rates on standard and microdose chest CT with two different computer-aided detection systems (SyngoCT-CAD, VA 20, Siemens Healthcare [CAD1]; Lung CAD, IntelliSpace Portal DX Server, Philips Healthcare [CAD2]) as well as maximum-intensity-projection (MIP) images. We also assessed the impact of different reconstruction kernels. Standard and microdose CT using three reconstruction kernels (i30, i50, i70) was performed with an anthropomorphic chest phantom. We placed 133 ground-glass and 133 solid nodules (diameters of 5 mm, 8 mm, 10 mm, and 12 mm) in 55 phantoms. Four blinded readers evaluated the MIP images; one recorded the results of CAD1 and CAD2. Sensitivities for CAD and MIP nodule detection on standard dose and microdose CT were calculated for each reconstruction kernel. Dose for microdose CT was significantly less than that for standard-dose CT (0.1323 mSv vs 1.65 mSv; p &lt; 0.0001). CAD1 delivered superior results compared with CAD2 for standard-dose and microdose CT (p &lt; 0.0001). At microdose level, the best stand-alone sensitivity (97.6%) was comparable with CAD1 sensitivity (96.0%; p = 0.36; both with i30 reconstruction kernel). Pooled sensitivities for all nodules, doses, and reconstruction kernels on CAD1 ranged from 88.9% to 97.3% versus 49.6% to 73.9% for CAD2. The best sensitivity was achieved with standard-dose CT, i50 kernel, and CAD1 (97.3%) versus 96% with microdose CT, i30 or i50 kernel, and CAD1. MIP images and CAD1 had similar performance at both dose levels (p = 0.1313 and p = 0.48). Submillisievert CT is feasible for detecting solid and ground-glass nodules that require soft-tissue kernels for MIP and CAD systems to achieve acceptable sensitivities. MIP reconstructions remain a valuable adjunct to the interpretation of chest CT for increasing sensitivity and have the advantage of significantly lower false-positive rates.</abstract><cop>United States</cop><pmid>27249174</pmid><doi>10.2214/AJR.15.15588</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-803X
ispartof American journal of roentgenology (1976), 2016-08, Vol.207 (2), p.282-288
issn 0361-803X
1546-3141
language eng
recordid cdi_proquest_miscellaneous_1806641164
source American Roentgen Ray Society; MEDLINE; Alma/SFX Local Collection
subjects Algorithms
Early Detection of Cancer
Humans
Lung Neoplasms - diagnostic imaging
Phantoms, Imaging
Radiation Dosage
Radiographic Image Interpretation, Computer-Assisted - methods
Sensitivity and Specificity
Solitary Pulmonary Nodule - diagnostic imaging
Tomography, X-Ray Computed - methods
title Maximum-Intensity-Projection and Computer-Aided-Detection Algorithms as Stand-Alone Reader Devices in Lung Cancer Screening Using Different Dose Levels and Reconstruction Kernels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum-Intensity-Projection%20and%20Computer-Aided-Detection%20Algorithms%20as%20Stand-Alone%20Reader%20Devices%20in%20Lung%20Cancer%20Screening%20Using%20Different%20Dose%20Levels%20and%20Reconstruction%20Kernels&rft.jtitle=American%20journal%20of%20roentgenology%20(1976)&rft.au=Ebner,%20Lukas&rft.date=2016-08&rft.volume=207&rft.issue=2&rft.spage=282&rft.epage=288&rft.pages=282-288&rft.issn=0361-803X&rft.eissn=1546-3141&rft_id=info:doi/10.2214/AJR.15.15588&rft_dat=%3Cproquest_cross%3E1806641164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1806641164&rft_id=info:pmid/27249174&rfr_iscdi=true