Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair

For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DNA repair 2016-08, Vol.44, p.110-117
1. Verfasser: Sugasawa, Kaoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue
container_start_page 110
container_title DNA repair
container_volume 44
creator Sugasawa, Kaoru
description For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER.
doi_str_mv 10.1016/j.dnarep.2016.05.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1806442310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568786416300969</els_id><sourcerecordid>1806442310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-902bd2b79e6e89a2c906793084953178c746de59e01c7099fad881899f3735f73</originalsourceid><addsrcrecordid>eNp9kMlOwzAQQC0EoqXwBwjlyKXBTuLtglSxSwUuII6Wa0-KqyQudoLg73FV6JHTzEhvtofQKcE5wYRdrHLb6QDrvEhVjmmOCd1DY0KZmHJB2f4uZ9UIHcW4wongjB2iUcELVlHKxujt0TdghkaHrAXzrjsX25j5Ort-mmVWt3oJWQDjl53rne-y2idQt61unO6ybjAN-N5ZyODLuLgh0knahWN0UOsmwslvnKDX25uXq_vp_Pnu4Wo2n5qqEP1U4mJhiwWXwEBIXRiJGZclFpWkJeHC8IpZoBIwMRxLWWsrBBEpKXlJa15O0Pl27jr4jwFir1oXDTSN7sAPURGBWVUVJcEJrbaoCT7GALVaB9fq8K0IVhulaqW2StVGqcJUJWGp7ex3w7Bowe6a_hwm4HILQPrz00FQ0TjoDFiXzPXKevf_hh_x84j2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806442310</pqid></control><display><type>article</type><title>Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sugasawa, Kaoru</creator><creatorcontrib>Sugasawa, Kaoru</creatorcontrib><description>For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER.</description><identifier>ISSN: 1568-7864</identifier><identifier>EISSN: 1568-7856</identifier><identifier>DOI: 10.1016/j.dnarep.2016.05.015</identifier><identifier>PMID: 27264556</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Chromatin ; Chromatin - chemistry ; Chromatin - metabolism ; DNA - chemistry ; DNA - metabolism ; DNA Damage - radiation effects ; DNA damage recognition ; DNA Repair ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Genome ; Humans ; Nucleotide excision repair ; Protein Binding ; Protein Structure, Secondary ; Substrate Specificity ; TFIIH ; Transcription Factor TFIIH - chemistry ; Transcription Factor TFIIH - genetics ; Transcription Factor TFIIH - metabolism ; Ultraviolet Rays ; UV-DDB ; Xeroderma Pigmentosum Group A Protein - chemistry ; Xeroderma Pigmentosum Group A Protein - genetics ; Xeroderma Pigmentosum Group A Protein - metabolism ; XPA ; XPC</subject><ispartof>DNA repair, 2016-08, Vol.44, p.110-117</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-902bd2b79e6e89a2c906793084953178c746de59e01c7099fad881899f3735f73</citedby><cites>FETCH-LOGICAL-c428t-902bd2b79e6e89a2c906793084953178c746de59e01c7099fad881899f3735f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dnarep.2016.05.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27264556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sugasawa, Kaoru</creatorcontrib><title>Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair</title><title>DNA repair</title><addtitle>DNA Repair (Amst)</addtitle><description>For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER.</description><subject>Animals</subject><subject>Chromatin</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - metabolism</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Damage - radiation effects</subject><subject>DNA damage recognition</subject><subject>DNA Repair</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Genome</subject><subject>Humans</subject><subject>Nucleotide excision repair</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Substrate Specificity</subject><subject>TFIIH</subject><subject>Transcription Factor TFIIH - chemistry</subject><subject>Transcription Factor TFIIH - genetics</subject><subject>Transcription Factor TFIIH - metabolism</subject><subject>Ultraviolet Rays</subject><subject>UV-DDB</subject><subject>Xeroderma Pigmentosum Group A Protein - chemistry</subject><subject>Xeroderma Pigmentosum Group A Protein - genetics</subject><subject>Xeroderma Pigmentosum Group A Protein - metabolism</subject><subject>XPA</subject><subject>XPC</subject><issn>1568-7864</issn><issn>1568-7856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMlOwzAQQC0EoqXwBwjlyKXBTuLtglSxSwUuII6Wa0-KqyQudoLg73FV6JHTzEhvtofQKcE5wYRdrHLb6QDrvEhVjmmOCd1DY0KZmHJB2f4uZ9UIHcW4wongjB2iUcELVlHKxujt0TdghkaHrAXzrjsX25j5Ort-mmVWt3oJWQDjl53rne-y2idQt61unO6ybjAN-N5ZyODLuLgh0knahWN0UOsmwslvnKDX25uXq_vp_Pnu4Wo2n5qqEP1U4mJhiwWXwEBIXRiJGZclFpWkJeHC8IpZoBIwMRxLWWsrBBEpKXlJa15O0Pl27jr4jwFir1oXDTSN7sAPURGBWVUVJcEJrbaoCT7GALVaB9fq8K0IVhulaqW2StVGqcJUJWGp7ex3w7Bowe6a_hwm4HILQPrz00FQ0TjoDFiXzPXKevf_hh_x84j2</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Sugasawa, Kaoru</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair</title><author>Sugasawa, Kaoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-902bd2b79e6e89a2c906793084953178c746de59e01c7099fad881899f3735f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Chromatin</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - metabolism</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Damage - radiation effects</topic><topic>DNA damage recognition</topic><topic>DNA Repair</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Genome</topic><topic>Humans</topic><topic>Nucleotide excision repair</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Substrate Specificity</topic><topic>TFIIH</topic><topic>Transcription Factor TFIIH - chemistry</topic><topic>Transcription Factor TFIIH - genetics</topic><topic>Transcription Factor TFIIH - metabolism</topic><topic>Ultraviolet Rays</topic><topic>UV-DDB</topic><topic>Xeroderma Pigmentosum Group A Protein - chemistry</topic><topic>Xeroderma Pigmentosum Group A Protein - genetics</topic><topic>Xeroderma Pigmentosum Group A Protein - metabolism</topic><topic>XPA</topic><topic>XPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugasawa, Kaoru</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>DNA repair</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugasawa, Kaoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair</atitle><jtitle>DNA repair</jtitle><addtitle>DNA Repair (Amst)</addtitle><date>2016-08</date><risdate>2016</risdate><volume>44</volume><spage>110</spage><epage>117</epage><pages>110-117</pages><issn>1568-7864</issn><eissn>1568-7856</eissn><abstract>For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27264556</pmid><doi>10.1016/j.dnarep.2016.05.015</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1568-7864
ispartof DNA repair, 2016-08, Vol.44, p.110-117
issn 1568-7864
1568-7856
language eng
recordid cdi_proquest_miscellaneous_1806442310
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Chromatin
Chromatin - chemistry
Chromatin - metabolism
DNA - chemistry
DNA - metabolism
DNA Damage - radiation effects
DNA damage recognition
DNA Repair
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Genome
Humans
Nucleotide excision repair
Protein Binding
Protein Structure, Secondary
Substrate Specificity
TFIIH
Transcription Factor TFIIH - chemistry
Transcription Factor TFIIH - genetics
Transcription Factor TFIIH - metabolism
Ultraviolet Rays
UV-DDB
Xeroderma Pigmentosum Group A Protein - chemistry
Xeroderma Pigmentosum Group A Protein - genetics
Xeroderma Pigmentosum Group A Protein - metabolism
XPA
XPC
title Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanisms%20of%20DNA%20damage%20recognition%20for%20mammalian%20nucleotide%20excision%20repair&rft.jtitle=DNA%20repair&rft.au=Sugasawa,%20Kaoru&rft.date=2016-08&rft.volume=44&rft.spage=110&rft.epage=117&rft.pages=110-117&rft.issn=1568-7864&rft.eissn=1568-7856&rft_id=info:doi/10.1016/j.dnarep.2016.05.015&rft_dat=%3Cproquest_cross%3E1806442310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1806442310&rft_id=info:pmid/27264556&rft_els_id=S1568786416300969&rfr_iscdi=true