Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair
For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex...
Gespeichert in:
Veröffentlicht in: | DNA repair 2016-08, Vol.44, p.110-117 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | |
container_start_page | 110 |
container_title | DNA repair |
container_volume | 44 |
creator | Sugasawa, Kaoru |
description | For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER. |
doi_str_mv | 10.1016/j.dnarep.2016.05.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1806442310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568786416300969</els_id><sourcerecordid>1806442310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-902bd2b79e6e89a2c906793084953178c746de59e01c7099fad881899f3735f73</originalsourceid><addsrcrecordid>eNp9kMlOwzAQQC0EoqXwBwjlyKXBTuLtglSxSwUuII6Wa0-KqyQudoLg73FV6JHTzEhvtofQKcE5wYRdrHLb6QDrvEhVjmmOCd1DY0KZmHJB2f4uZ9UIHcW4wongjB2iUcELVlHKxujt0TdghkaHrAXzrjsX25j5Ort-mmVWt3oJWQDjl53rne-y2idQt61unO6ybjAN-N5ZyODLuLgh0knahWN0UOsmwslvnKDX25uXq_vp_Pnu4Wo2n5qqEP1U4mJhiwWXwEBIXRiJGZclFpWkJeHC8IpZoBIwMRxLWWsrBBEpKXlJa15O0Pl27jr4jwFir1oXDTSN7sAPURGBWVUVJcEJrbaoCT7GALVaB9fq8K0IVhulaqW2StVGqcJUJWGp7ex3w7Bowe6a_hwm4HILQPrz00FQ0TjoDFiXzPXKevf_hh_x84j2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806442310</pqid></control><display><type>article</type><title>Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sugasawa, Kaoru</creator><creatorcontrib>Sugasawa, Kaoru</creatorcontrib><description>For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER.</description><identifier>ISSN: 1568-7864</identifier><identifier>EISSN: 1568-7856</identifier><identifier>DOI: 10.1016/j.dnarep.2016.05.015</identifier><identifier>PMID: 27264556</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Chromatin ; Chromatin - chemistry ; Chromatin - metabolism ; DNA - chemistry ; DNA - metabolism ; DNA Damage - radiation effects ; DNA damage recognition ; DNA Repair ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Genome ; Humans ; Nucleotide excision repair ; Protein Binding ; Protein Structure, Secondary ; Substrate Specificity ; TFIIH ; Transcription Factor TFIIH - chemistry ; Transcription Factor TFIIH - genetics ; Transcription Factor TFIIH - metabolism ; Ultraviolet Rays ; UV-DDB ; Xeroderma Pigmentosum Group A Protein - chemistry ; Xeroderma Pigmentosum Group A Protein - genetics ; Xeroderma Pigmentosum Group A Protein - metabolism ; XPA ; XPC</subject><ispartof>DNA repair, 2016-08, Vol.44, p.110-117</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-902bd2b79e6e89a2c906793084953178c746de59e01c7099fad881899f3735f73</citedby><cites>FETCH-LOGICAL-c428t-902bd2b79e6e89a2c906793084953178c746de59e01c7099fad881899f3735f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dnarep.2016.05.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27264556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sugasawa, Kaoru</creatorcontrib><title>Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair</title><title>DNA repair</title><addtitle>DNA Repair (Amst)</addtitle><description>For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER.</description><subject>Animals</subject><subject>Chromatin</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - metabolism</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Damage - radiation effects</subject><subject>DNA damage recognition</subject><subject>DNA Repair</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Genome</subject><subject>Humans</subject><subject>Nucleotide excision repair</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Substrate Specificity</subject><subject>TFIIH</subject><subject>Transcription Factor TFIIH - chemistry</subject><subject>Transcription Factor TFIIH - genetics</subject><subject>Transcription Factor TFIIH - metabolism</subject><subject>Ultraviolet Rays</subject><subject>UV-DDB</subject><subject>Xeroderma Pigmentosum Group A Protein - chemistry</subject><subject>Xeroderma Pigmentosum Group A Protein - genetics</subject><subject>Xeroderma Pigmentosum Group A Protein - metabolism</subject><subject>XPA</subject><subject>XPC</subject><issn>1568-7864</issn><issn>1568-7856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMlOwzAQQC0EoqXwBwjlyKXBTuLtglSxSwUuII6Wa0-KqyQudoLg73FV6JHTzEhvtofQKcE5wYRdrHLb6QDrvEhVjmmOCd1DY0KZmHJB2f4uZ9UIHcW4wongjB2iUcELVlHKxujt0TdghkaHrAXzrjsX25j5Ort-mmVWt3oJWQDjl53rne-y2idQt61unO6ybjAN-N5ZyODLuLgh0knahWN0UOsmwslvnKDX25uXq_vp_Pnu4Wo2n5qqEP1U4mJhiwWXwEBIXRiJGZclFpWkJeHC8IpZoBIwMRxLWWsrBBEpKXlJa15O0Pl27jr4jwFir1oXDTSN7sAPURGBWVUVJcEJrbaoCT7GALVaB9fq8K0IVhulaqW2StVGqcJUJWGp7ex3w7Bowe6a_hwm4HILQPrz00FQ0TjoDFiXzPXKevf_hh_x84j2</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Sugasawa, Kaoru</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair</title><author>Sugasawa, Kaoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-902bd2b79e6e89a2c906793084953178c746de59e01c7099fad881899f3735f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Chromatin</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - metabolism</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Damage - radiation effects</topic><topic>DNA damage recognition</topic><topic>DNA Repair</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Genome</topic><topic>Humans</topic><topic>Nucleotide excision repair</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Substrate Specificity</topic><topic>TFIIH</topic><topic>Transcription Factor TFIIH - chemistry</topic><topic>Transcription Factor TFIIH - genetics</topic><topic>Transcription Factor TFIIH - metabolism</topic><topic>Ultraviolet Rays</topic><topic>UV-DDB</topic><topic>Xeroderma Pigmentosum Group A Protein - chemistry</topic><topic>Xeroderma Pigmentosum Group A Protein - genetics</topic><topic>Xeroderma Pigmentosum Group A Protein - metabolism</topic><topic>XPA</topic><topic>XPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugasawa, Kaoru</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>DNA repair</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugasawa, Kaoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair</atitle><jtitle>DNA repair</jtitle><addtitle>DNA Repair (Amst)</addtitle><date>2016-08</date><risdate>2016</risdate><volume>44</volume><spage>110</spage><epage>117</epage><pages>110-117</pages><issn>1568-7864</issn><eissn>1568-7856</eissn><abstract>For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27264556</pmid><doi>10.1016/j.dnarep.2016.05.015</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-7864 |
ispartof | DNA repair, 2016-08, Vol.44, p.110-117 |
issn | 1568-7864 1568-7856 |
language | eng |
recordid | cdi_proquest_miscellaneous_1806442310 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Chromatin Chromatin - chemistry Chromatin - metabolism DNA - chemistry DNA - metabolism DNA Damage - radiation effects DNA damage recognition DNA Repair DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Genome Humans Nucleotide excision repair Protein Binding Protein Structure, Secondary Substrate Specificity TFIIH Transcription Factor TFIIH - chemistry Transcription Factor TFIIH - genetics Transcription Factor TFIIH - metabolism Ultraviolet Rays UV-DDB Xeroderma Pigmentosum Group A Protein - chemistry Xeroderma Pigmentosum Group A Protein - genetics Xeroderma Pigmentosum Group A Protein - metabolism XPA XPC |
title | Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanisms%20of%20DNA%20damage%20recognition%20for%20mammalian%20nucleotide%20excision%20repair&rft.jtitle=DNA%20repair&rft.au=Sugasawa,%20Kaoru&rft.date=2016-08&rft.volume=44&rft.spage=110&rft.epage=117&rft.pages=110-117&rft.issn=1568-7864&rft.eissn=1568-7856&rft_id=info:doi/10.1016/j.dnarep.2016.05.015&rft_dat=%3Cproquest_cross%3E1806442310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1806442310&rft_id=info:pmid/27264556&rft_els_id=S1568786416300969&rfr_iscdi=true |