Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions
Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular neuroscience 2004-05, Vol.26 (1), p.34-49 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 1 |
container_start_page | 34 |
container_title | Molecular and cellular neuroscience |
container_volume | 26 |
creator | Mingorance, Ana Fontana, Xavier Solé, Marta Burgaya, Ferran Ureña, Jesús M. Teng, Felicia Y.H. Tang, Bor Luen Hunt, David Anderson, Patrick N. Bethea, John R. Schwab, Martin E. Soriano, Eduardo del Rı́o, José A. |
description | Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the entorhino-hippocampal formation of developing and adult mice. We also provide evidence that Nogo-A does not inhibit embryonic hippocampal neurons, in contrast to other cell types such as cerebellar granule cells. Our results also show that Nogo and Nogo receptor mRNA are expressed in the adult by both principal and local-circuit hippocampal neurons, and that after lesion, Nogo-A is also transiently expressed by a subset of reactive astrocytes. Furthermore, we analyzed their regulation after kainic acid (KA) treatment and in response to the transection of the entorhino-hippocampal connection. We found that Nogo-A and Nogo receptor are differentially regulated after kainic acid or perforant pathway lesions. Lastly, we show that the regenerative potential of lesioned entorhino-hippocampal organotypic slice co-cultures is increased after blockage of Nogo-A with two IN-1 blocking antibodies. In conclusion, our results show that Nogo and its receptor might play key roles during development of hippocampal connections and that they are implicated in neuronal plasticity in the adult. |
doi_str_mv | 10.1016/j.mcn.2004.01.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18064199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S104474310400003X</els_id><sourcerecordid>18064199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-75ddafe8f9f0a9bcdaff9c7b1b4c049da51341adeb41b608181e21222b4e5b713</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0Eon_gA3BBPnFLmEmczVqcUFUoUlUk1J4tx57sepXEwXaKeueD47ArwamneWO990b-MfYOoUTAzcdDOZqprABECVgC4At2jiCbQtZV-3LVQhStqPGMXcR4AICmkvVrdoYNVohte85-_6DdMujk_MR9z-_8znM92aMIZGhOPnC7BDfteNoTt_RIg59HmtIaWJ-y9GHvJl_s3Tx7o8dZD3zWaf9LP_1t032iwLVdhsT_9wwU8-H4hr3q9RDp7Wlesocv1_dXN8Xt96_frj7fFkaITSraxlrd07aXPWjZmbz00rQddsKAkFY3WAvUljqB3Qa2uEWqsKqqTlDTtVhfsg_H3jn4nwvFpEYXDQ2DnsgvUeEWNgKlzEY8Gk3wMQbq1RzcqMOTQlArenVQGb1a0StAldHnzPtT-dKNZP8lTqyz4dPRQPmLj46CisbRZMi6DDop690z9X8AW2OXpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18064199</pqid></control><display><type>article</type><title>Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Mingorance, Ana ; Fontana, Xavier ; Solé, Marta ; Burgaya, Ferran ; Ureña, Jesús M. ; Teng, Felicia Y.H. ; Tang, Bor Luen ; Hunt, David ; Anderson, Patrick N. ; Bethea, John R. ; Schwab, Martin E. ; Soriano, Eduardo ; del Rı́o, José A.</creator><creatorcontrib>Mingorance, Ana ; Fontana, Xavier ; Solé, Marta ; Burgaya, Ferran ; Ureña, Jesús M. ; Teng, Felicia Y.H. ; Tang, Bor Luen ; Hunt, David ; Anderson, Patrick N. ; Bethea, John R. ; Schwab, Martin E. ; Soriano, Eduardo ; del Rı́o, José A.</creatorcontrib><description>Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the entorhino-hippocampal formation of developing and adult mice. We also provide evidence that Nogo-A does not inhibit embryonic hippocampal neurons, in contrast to other cell types such as cerebellar granule cells. Our results also show that Nogo and Nogo receptor mRNA are expressed in the adult by both principal and local-circuit hippocampal neurons, and that after lesion, Nogo-A is also transiently expressed by a subset of reactive astrocytes. Furthermore, we analyzed their regulation after kainic acid (KA) treatment and in response to the transection of the entorhino-hippocampal connection. We found that Nogo-A and Nogo receptor are differentially regulated after kainic acid or perforant pathway lesions. Lastly, we show that the regenerative potential of lesioned entorhino-hippocampal organotypic slice co-cultures is increased after blockage of Nogo-A with two IN-1 blocking antibodies. In conclusion, our results show that Nogo and its receptor might play key roles during development of hippocampal connections and that they are implicated in neuronal plasticity in the adult.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2004.01.001</identifier><identifier>PMID: 15121177</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Newborn ; Antibodies - pharmacology ; Astrocytes - cytology ; Astrocytes - metabolism ; Brain Injuries - chemically induced ; Brain Injuries - physiopathology ; COS Cells ; Entorhinal Cortex - embryology ; Entorhinal Cortex - injuries ; Entorhinal Cortex - physiology ; Fetus ; Gene Expression Regulation, Developmental - genetics ; Gliosis - metabolism ; Gliosis - physiopathology ; GPI-Linked Proteins ; Growth Cones - metabolism ; Growth Cones - ultrastructure ; Hippocampus - embryology ; Hippocampus - injuries ; Hippocampus - physiology ; Kainic Acid ; Mice ; Myelin Proteins - antagonists & inhibitors ; Myelin Proteins - genetics ; Myelin Proteins - metabolism ; Nerve Regeneration - physiology ; Neuronal Plasticity - physiology ; Nogo Proteins ; Nogo Receptor 1 ; Perforant Pathway - embryology ; Perforant Pathway - injuries ; Perforant Pathway - physiology ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Receptors, Peptide - genetics ; Receptors, Peptide - metabolism ; RNA, Messenger - metabolism</subject><ispartof>Molecular and cellular neuroscience, 2004-05, Vol.26 (1), p.34-49</ispartof><rights>2004 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-75ddafe8f9f0a9bcdaff9c7b1b4c049da51341adeb41b608181e21222b4e5b713</citedby><cites>FETCH-LOGICAL-c446t-75ddafe8f9f0a9bcdaff9c7b1b4c049da51341adeb41b608181e21222b4e5b713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S104474310400003X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15121177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mingorance, Ana</creatorcontrib><creatorcontrib>Fontana, Xavier</creatorcontrib><creatorcontrib>Solé, Marta</creatorcontrib><creatorcontrib>Burgaya, Ferran</creatorcontrib><creatorcontrib>Ureña, Jesús M.</creatorcontrib><creatorcontrib>Teng, Felicia Y.H.</creatorcontrib><creatorcontrib>Tang, Bor Luen</creatorcontrib><creatorcontrib>Hunt, David</creatorcontrib><creatorcontrib>Anderson, Patrick N.</creatorcontrib><creatorcontrib>Bethea, John R.</creatorcontrib><creatorcontrib>Schwab, Martin E.</creatorcontrib><creatorcontrib>Soriano, Eduardo</creatorcontrib><creatorcontrib>del Rı́o, José A.</creatorcontrib><title>Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the entorhino-hippocampal formation of developing and adult mice. We also provide evidence that Nogo-A does not inhibit embryonic hippocampal neurons, in contrast to other cell types such as cerebellar granule cells. Our results also show that Nogo and Nogo receptor mRNA are expressed in the adult by both principal and local-circuit hippocampal neurons, and that after lesion, Nogo-A is also transiently expressed by a subset of reactive astrocytes. Furthermore, we analyzed their regulation after kainic acid (KA) treatment and in response to the transection of the entorhino-hippocampal connection. We found that Nogo-A and Nogo receptor are differentially regulated after kainic acid or perforant pathway lesions. Lastly, we show that the regenerative potential of lesioned entorhino-hippocampal organotypic slice co-cultures is increased after blockage of Nogo-A with two IN-1 blocking antibodies. In conclusion, our results show that Nogo and its receptor might play key roles during development of hippocampal connections and that they are implicated in neuronal plasticity in the adult.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Antibodies - pharmacology</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>Brain Injuries - chemically induced</subject><subject>Brain Injuries - physiopathology</subject><subject>COS Cells</subject><subject>Entorhinal Cortex - embryology</subject><subject>Entorhinal Cortex - injuries</subject><subject>Entorhinal Cortex - physiology</subject><subject>Fetus</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Gliosis - metabolism</subject><subject>Gliosis - physiopathology</subject><subject>GPI-Linked Proteins</subject><subject>Growth Cones - metabolism</subject><subject>Growth Cones - ultrastructure</subject><subject>Hippocampus - embryology</subject><subject>Hippocampus - injuries</subject><subject>Hippocampus - physiology</subject><subject>Kainic Acid</subject><subject>Mice</subject><subject>Myelin Proteins - antagonists & inhibitors</subject><subject>Myelin Proteins - genetics</subject><subject>Myelin Proteins - metabolism</subject><subject>Nerve Regeneration - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Nogo Proteins</subject><subject>Nogo Receptor 1</subject><subject>Perforant Pathway - embryology</subject><subject>Perforant Pathway - injuries</subject><subject>Perforant Pathway - physiology</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Receptors, Peptide - genetics</subject><subject>Receptors, Peptide - metabolism</subject><subject>RNA, Messenger - metabolism</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9v1DAQxS0Eon_gA3BBPnFLmEmczVqcUFUoUlUk1J4tx57sepXEwXaKeueD47ArwamneWO990b-MfYOoUTAzcdDOZqprABECVgC4At2jiCbQtZV-3LVQhStqPGMXcR4AICmkvVrdoYNVohte85-_6DdMujk_MR9z-_8znM92aMIZGhOPnC7BDfteNoTt_RIg59HmtIaWJ-y9GHvJl_s3Tx7o8dZD3zWaf9LP_1t032iwLVdhsT_9wwU8-H4hr3q9RDp7Wlesocv1_dXN8Xt96_frj7fFkaITSraxlrd07aXPWjZmbz00rQddsKAkFY3WAvUljqB3Qa2uEWqsKqqTlDTtVhfsg_H3jn4nwvFpEYXDQ2DnsgvUeEWNgKlzEY8Gk3wMQbq1RzcqMOTQlArenVQGb1a0StAldHnzPtT-dKNZP8lTqyz4dPRQPmLj46CisbRZMi6DDop690z9X8AW2OXpw</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Mingorance, Ana</creator><creator>Fontana, Xavier</creator><creator>Solé, Marta</creator><creator>Burgaya, Ferran</creator><creator>Ureña, Jesús M.</creator><creator>Teng, Felicia Y.H.</creator><creator>Tang, Bor Luen</creator><creator>Hunt, David</creator><creator>Anderson, Patrick N.</creator><creator>Bethea, John R.</creator><creator>Schwab, Martin E.</creator><creator>Soriano, Eduardo</creator><creator>del Rı́o, José A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>20040501</creationdate><title>Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions</title><author>Mingorance, Ana ; Fontana, Xavier ; Solé, Marta ; Burgaya, Ferran ; Ureña, Jesús M. ; Teng, Felicia Y.H. ; Tang, Bor Luen ; Hunt, David ; Anderson, Patrick N. ; Bethea, John R. ; Schwab, Martin E. ; Soriano, Eduardo ; del Rı́o, José A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-75ddafe8f9f0a9bcdaff9c7b1b4c049da51341adeb41b608181e21222b4e5b713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Antibodies - pharmacology</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>Brain Injuries - chemically induced</topic><topic>Brain Injuries - physiopathology</topic><topic>COS Cells</topic><topic>Entorhinal Cortex - embryology</topic><topic>Entorhinal Cortex - injuries</topic><topic>Entorhinal Cortex - physiology</topic><topic>Fetus</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Gliosis - metabolism</topic><topic>Gliosis - physiopathology</topic><topic>GPI-Linked Proteins</topic><topic>Growth Cones - metabolism</topic><topic>Growth Cones - ultrastructure</topic><topic>Hippocampus - embryology</topic><topic>Hippocampus - injuries</topic><topic>Hippocampus - physiology</topic><topic>Kainic Acid</topic><topic>Mice</topic><topic>Myelin Proteins - antagonists & inhibitors</topic><topic>Myelin Proteins - genetics</topic><topic>Myelin Proteins - metabolism</topic><topic>Nerve Regeneration - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Nogo Proteins</topic><topic>Nogo Receptor 1</topic><topic>Perforant Pathway - embryology</topic><topic>Perforant Pathway - injuries</topic><topic>Perforant Pathway - physiology</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Receptors, Peptide - genetics</topic><topic>Receptors, Peptide - metabolism</topic><topic>RNA, Messenger - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mingorance, Ana</creatorcontrib><creatorcontrib>Fontana, Xavier</creatorcontrib><creatorcontrib>Solé, Marta</creatorcontrib><creatorcontrib>Burgaya, Ferran</creatorcontrib><creatorcontrib>Ureña, Jesús M.</creatorcontrib><creatorcontrib>Teng, Felicia Y.H.</creatorcontrib><creatorcontrib>Tang, Bor Luen</creatorcontrib><creatorcontrib>Hunt, David</creatorcontrib><creatorcontrib>Anderson, Patrick N.</creatorcontrib><creatorcontrib>Bethea, John R.</creatorcontrib><creatorcontrib>Schwab, Martin E.</creatorcontrib><creatorcontrib>Soriano, Eduardo</creatorcontrib><creatorcontrib>del Rı́o, José A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mingorance, Ana</au><au>Fontana, Xavier</au><au>Solé, Marta</au><au>Burgaya, Ferran</au><au>Ureña, Jesús M.</au><au>Teng, Felicia Y.H.</au><au>Tang, Bor Luen</au><au>Hunt, David</au><au>Anderson, Patrick N.</au><au>Bethea, John R.</au><au>Schwab, Martin E.</au><au>Soriano, Eduardo</au><au>del Rı́o, José A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2004-05-01</date><risdate>2004</risdate><volume>26</volume><issue>1</issue><spage>34</spage><epage>49</epage><pages>34-49</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the entorhino-hippocampal formation of developing and adult mice. We also provide evidence that Nogo-A does not inhibit embryonic hippocampal neurons, in contrast to other cell types such as cerebellar granule cells. Our results also show that Nogo and Nogo receptor mRNA are expressed in the adult by both principal and local-circuit hippocampal neurons, and that after lesion, Nogo-A is also transiently expressed by a subset of reactive astrocytes. Furthermore, we analyzed their regulation after kainic acid (KA) treatment and in response to the transection of the entorhino-hippocampal connection. We found that Nogo-A and Nogo receptor are differentially regulated after kainic acid or perforant pathway lesions. Lastly, we show that the regenerative potential of lesioned entorhino-hippocampal organotypic slice co-cultures is increased after blockage of Nogo-A with two IN-1 blocking antibodies. In conclusion, our results show that Nogo and its receptor might play key roles during development of hippocampal connections and that they are implicated in neuronal plasticity in the adult.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15121177</pmid><doi>10.1016/j.mcn.2004.01.001</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-7431 |
ispartof | Molecular and cellular neuroscience, 2004-05, Vol.26 (1), p.34-49 |
issn | 1044-7431 1095-9327 |
language | eng |
recordid | cdi_proquest_miscellaneous_18064199 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Animals, Newborn Antibodies - pharmacology Astrocytes - cytology Astrocytes - metabolism Brain Injuries - chemically induced Brain Injuries - physiopathology COS Cells Entorhinal Cortex - embryology Entorhinal Cortex - injuries Entorhinal Cortex - physiology Fetus Gene Expression Regulation, Developmental - genetics Gliosis - metabolism Gliosis - physiopathology GPI-Linked Proteins Growth Cones - metabolism Growth Cones - ultrastructure Hippocampus - embryology Hippocampus - injuries Hippocampus - physiology Kainic Acid Mice Myelin Proteins - antagonists & inhibitors Myelin Proteins - genetics Myelin Proteins - metabolism Nerve Regeneration - physiology Neuronal Plasticity - physiology Nogo Proteins Nogo Receptor 1 Perforant Pathway - embryology Perforant Pathway - injuries Perforant Pathway - physiology Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism Receptors, Peptide - genetics Receptors, Peptide - metabolism RNA, Messenger - metabolism |
title | Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Nogo%20and%20Nogo%20receptor%20during%20the%20development%20of%20the%20entorhino-hippocampal%20pathway%20and%20after%20adult%20hippocampal%20lesions&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Mingorance,%20Ana&rft.date=2004-05-01&rft.volume=26&rft.issue=1&rft.spage=34&rft.epage=49&rft.pages=34-49&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2004.01.001&rft_dat=%3Cproquest_cross%3E18064199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18064199&rft_id=info:pmid/15121177&rft_els_id=S104474310400003X&rfr_iscdi=true |