Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions

Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular neuroscience 2004-05, Vol.26 (1), p.34-49
Hauptverfasser: Mingorance, Ana, Fontana, Xavier, Solé, Marta, Burgaya, Ferran, Ureña, Jesús M., Teng, Felicia Y.H., Tang, Bor Luen, Hunt, David, Anderson, Patrick N., Bethea, John R., Schwab, Martin E., Soriano, Eduardo, del Rı́o, José A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 34
container_title Molecular and cellular neuroscience
container_volume 26
creator Mingorance, Ana
Fontana, Xavier
Solé, Marta
Burgaya, Ferran
Ureña, Jesús M.
Teng, Felicia Y.H.
Tang, Bor Luen
Hunt, David
Anderson, Patrick N.
Bethea, John R.
Schwab, Martin E.
Soriano, Eduardo
del Rı́o, José A.
description Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the entorhino-hippocampal formation of developing and adult mice. We also provide evidence that Nogo-A does not inhibit embryonic hippocampal neurons, in contrast to other cell types such as cerebellar granule cells. Our results also show that Nogo and Nogo receptor mRNA are expressed in the adult by both principal and local-circuit hippocampal neurons, and that after lesion, Nogo-A is also transiently expressed by a subset of reactive astrocytes. Furthermore, we analyzed their regulation after kainic acid (KA) treatment and in response to the transection of the entorhino-hippocampal connection. We found that Nogo-A and Nogo receptor are differentially regulated after kainic acid or perforant pathway lesions. Lastly, we show that the regenerative potential of lesioned entorhino-hippocampal organotypic slice co-cultures is increased after blockage of Nogo-A with two IN-1 blocking antibodies. In conclusion, our results show that Nogo and its receptor might play key roles during development of hippocampal connections and that they are implicated in neuronal plasticity in the adult.
doi_str_mv 10.1016/j.mcn.2004.01.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18064199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S104474310400003X</els_id><sourcerecordid>18064199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-75ddafe8f9f0a9bcdaff9c7b1b4c049da51341adeb41b608181e21222b4e5b713</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0Eon_gA3BBPnFLmEmczVqcUFUoUlUk1J4tx57sepXEwXaKeueD47ArwamneWO990b-MfYOoUTAzcdDOZqprABECVgC4At2jiCbQtZV-3LVQhStqPGMXcR4AICmkvVrdoYNVohte85-_6DdMujk_MR9z-_8znM92aMIZGhOPnC7BDfteNoTt_RIg59HmtIaWJ-y9GHvJl_s3Tx7o8dZD3zWaf9LP_1t032iwLVdhsT_9wwU8-H4hr3q9RDp7Wlesocv1_dXN8Xt96_frj7fFkaITSraxlrd07aXPWjZmbz00rQddsKAkFY3WAvUljqB3Qa2uEWqsKqqTlDTtVhfsg_H3jn4nwvFpEYXDQ2DnsgvUeEWNgKlzEY8Gk3wMQbq1RzcqMOTQlArenVQGb1a0StAldHnzPtT-dKNZP8lTqyz4dPRQPmLj46CisbRZMi6DDop690z9X8AW2OXpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18064199</pqid></control><display><type>article</type><title>Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Mingorance, Ana ; Fontana, Xavier ; Solé, Marta ; Burgaya, Ferran ; Ureña, Jesús M. ; Teng, Felicia Y.H. ; Tang, Bor Luen ; Hunt, David ; Anderson, Patrick N. ; Bethea, John R. ; Schwab, Martin E. ; Soriano, Eduardo ; del Rı́o, José A.</creator><creatorcontrib>Mingorance, Ana ; Fontana, Xavier ; Solé, Marta ; Burgaya, Ferran ; Ureña, Jesús M. ; Teng, Felicia Y.H. ; Tang, Bor Luen ; Hunt, David ; Anderson, Patrick N. ; Bethea, John R. ; Schwab, Martin E. ; Soriano, Eduardo ; del Rı́o, José A.</creatorcontrib><description>Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the entorhino-hippocampal formation of developing and adult mice. We also provide evidence that Nogo-A does not inhibit embryonic hippocampal neurons, in contrast to other cell types such as cerebellar granule cells. Our results also show that Nogo and Nogo receptor mRNA are expressed in the adult by both principal and local-circuit hippocampal neurons, and that after lesion, Nogo-A is also transiently expressed by a subset of reactive astrocytes. Furthermore, we analyzed their regulation after kainic acid (KA) treatment and in response to the transection of the entorhino-hippocampal connection. We found that Nogo-A and Nogo receptor are differentially regulated after kainic acid or perforant pathway lesions. Lastly, we show that the regenerative potential of lesioned entorhino-hippocampal organotypic slice co-cultures is increased after blockage of Nogo-A with two IN-1 blocking antibodies. In conclusion, our results show that Nogo and its receptor might play key roles during development of hippocampal connections and that they are implicated in neuronal plasticity in the adult.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2004.01.001</identifier><identifier>PMID: 15121177</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Newborn ; Antibodies - pharmacology ; Astrocytes - cytology ; Astrocytes - metabolism ; Brain Injuries - chemically induced ; Brain Injuries - physiopathology ; COS Cells ; Entorhinal Cortex - embryology ; Entorhinal Cortex - injuries ; Entorhinal Cortex - physiology ; Fetus ; Gene Expression Regulation, Developmental - genetics ; Gliosis - metabolism ; Gliosis - physiopathology ; GPI-Linked Proteins ; Growth Cones - metabolism ; Growth Cones - ultrastructure ; Hippocampus - embryology ; Hippocampus - injuries ; Hippocampus - physiology ; Kainic Acid ; Mice ; Myelin Proteins - antagonists &amp; inhibitors ; Myelin Proteins - genetics ; Myelin Proteins - metabolism ; Nerve Regeneration - physiology ; Neuronal Plasticity - physiology ; Nogo Proteins ; Nogo Receptor 1 ; Perforant Pathway - embryology ; Perforant Pathway - injuries ; Perforant Pathway - physiology ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Receptors, Peptide - genetics ; Receptors, Peptide - metabolism ; RNA, Messenger - metabolism</subject><ispartof>Molecular and cellular neuroscience, 2004-05, Vol.26 (1), p.34-49</ispartof><rights>2004 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-75ddafe8f9f0a9bcdaff9c7b1b4c049da51341adeb41b608181e21222b4e5b713</citedby><cites>FETCH-LOGICAL-c446t-75ddafe8f9f0a9bcdaff9c7b1b4c049da51341adeb41b608181e21222b4e5b713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S104474310400003X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15121177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mingorance, Ana</creatorcontrib><creatorcontrib>Fontana, Xavier</creatorcontrib><creatorcontrib>Solé, Marta</creatorcontrib><creatorcontrib>Burgaya, Ferran</creatorcontrib><creatorcontrib>Ureña, Jesús M.</creatorcontrib><creatorcontrib>Teng, Felicia Y.H.</creatorcontrib><creatorcontrib>Tang, Bor Luen</creatorcontrib><creatorcontrib>Hunt, David</creatorcontrib><creatorcontrib>Anderson, Patrick N.</creatorcontrib><creatorcontrib>Bethea, John R.</creatorcontrib><creatorcontrib>Schwab, Martin E.</creatorcontrib><creatorcontrib>Soriano, Eduardo</creatorcontrib><creatorcontrib>del Rı́o, José A.</creatorcontrib><title>Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the entorhino-hippocampal formation of developing and adult mice. We also provide evidence that Nogo-A does not inhibit embryonic hippocampal neurons, in contrast to other cell types such as cerebellar granule cells. Our results also show that Nogo and Nogo receptor mRNA are expressed in the adult by both principal and local-circuit hippocampal neurons, and that after lesion, Nogo-A is also transiently expressed by a subset of reactive astrocytes. Furthermore, we analyzed their regulation after kainic acid (KA) treatment and in response to the transection of the entorhino-hippocampal connection. We found that Nogo-A and Nogo receptor are differentially regulated after kainic acid or perforant pathway lesions. Lastly, we show that the regenerative potential of lesioned entorhino-hippocampal organotypic slice co-cultures is increased after blockage of Nogo-A with two IN-1 blocking antibodies. In conclusion, our results show that Nogo and its receptor might play key roles during development of hippocampal connections and that they are implicated in neuronal plasticity in the adult.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Antibodies - pharmacology</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>Brain Injuries - chemically induced</subject><subject>Brain Injuries - physiopathology</subject><subject>COS Cells</subject><subject>Entorhinal Cortex - embryology</subject><subject>Entorhinal Cortex - injuries</subject><subject>Entorhinal Cortex - physiology</subject><subject>Fetus</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Gliosis - metabolism</subject><subject>Gliosis - physiopathology</subject><subject>GPI-Linked Proteins</subject><subject>Growth Cones - metabolism</subject><subject>Growth Cones - ultrastructure</subject><subject>Hippocampus - embryology</subject><subject>Hippocampus - injuries</subject><subject>Hippocampus - physiology</subject><subject>Kainic Acid</subject><subject>Mice</subject><subject>Myelin Proteins - antagonists &amp; inhibitors</subject><subject>Myelin Proteins - genetics</subject><subject>Myelin Proteins - metabolism</subject><subject>Nerve Regeneration - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Nogo Proteins</subject><subject>Nogo Receptor 1</subject><subject>Perforant Pathway - embryology</subject><subject>Perforant Pathway - injuries</subject><subject>Perforant Pathway - physiology</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Receptors, Peptide - genetics</subject><subject>Receptors, Peptide - metabolism</subject><subject>RNA, Messenger - metabolism</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9v1DAQxS0Eon_gA3BBPnFLmEmczVqcUFUoUlUk1J4tx57sepXEwXaKeueD47ArwamneWO990b-MfYOoUTAzcdDOZqprABECVgC4At2jiCbQtZV-3LVQhStqPGMXcR4AICmkvVrdoYNVohte85-_6DdMujk_MR9z-_8znM92aMIZGhOPnC7BDfteNoTt_RIg59HmtIaWJ-y9GHvJl_s3Tx7o8dZD3zWaf9LP_1t032iwLVdhsT_9wwU8-H4hr3q9RDp7Wlesocv1_dXN8Xt96_frj7fFkaITSraxlrd07aXPWjZmbz00rQddsKAkFY3WAvUljqB3Qa2uEWqsKqqTlDTtVhfsg_H3jn4nwvFpEYXDQ2DnsgvUeEWNgKlzEY8Gk3wMQbq1RzcqMOTQlArenVQGb1a0StAldHnzPtT-dKNZP8lTqyz4dPRQPmLj46CisbRZMi6DDop690z9X8AW2OXpw</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Mingorance, Ana</creator><creator>Fontana, Xavier</creator><creator>Solé, Marta</creator><creator>Burgaya, Ferran</creator><creator>Ureña, Jesús M.</creator><creator>Teng, Felicia Y.H.</creator><creator>Tang, Bor Luen</creator><creator>Hunt, David</creator><creator>Anderson, Patrick N.</creator><creator>Bethea, John R.</creator><creator>Schwab, Martin E.</creator><creator>Soriano, Eduardo</creator><creator>del Rı́o, José A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>20040501</creationdate><title>Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions</title><author>Mingorance, Ana ; Fontana, Xavier ; Solé, Marta ; Burgaya, Ferran ; Ureña, Jesús M. ; Teng, Felicia Y.H. ; Tang, Bor Luen ; Hunt, David ; Anderson, Patrick N. ; Bethea, John R. ; Schwab, Martin E. ; Soriano, Eduardo ; del Rı́o, José A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-75ddafe8f9f0a9bcdaff9c7b1b4c049da51341adeb41b608181e21222b4e5b713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Antibodies - pharmacology</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>Brain Injuries - chemically induced</topic><topic>Brain Injuries - physiopathology</topic><topic>COS Cells</topic><topic>Entorhinal Cortex - embryology</topic><topic>Entorhinal Cortex - injuries</topic><topic>Entorhinal Cortex - physiology</topic><topic>Fetus</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Gliosis - metabolism</topic><topic>Gliosis - physiopathology</topic><topic>GPI-Linked Proteins</topic><topic>Growth Cones - metabolism</topic><topic>Growth Cones - ultrastructure</topic><topic>Hippocampus - embryology</topic><topic>Hippocampus - injuries</topic><topic>Hippocampus - physiology</topic><topic>Kainic Acid</topic><topic>Mice</topic><topic>Myelin Proteins - antagonists &amp; inhibitors</topic><topic>Myelin Proteins - genetics</topic><topic>Myelin Proteins - metabolism</topic><topic>Nerve Regeneration - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Nogo Proteins</topic><topic>Nogo Receptor 1</topic><topic>Perforant Pathway - embryology</topic><topic>Perforant Pathway - injuries</topic><topic>Perforant Pathway - physiology</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Receptors, Peptide - genetics</topic><topic>Receptors, Peptide - metabolism</topic><topic>RNA, Messenger - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mingorance, Ana</creatorcontrib><creatorcontrib>Fontana, Xavier</creatorcontrib><creatorcontrib>Solé, Marta</creatorcontrib><creatorcontrib>Burgaya, Ferran</creatorcontrib><creatorcontrib>Ureña, Jesús M.</creatorcontrib><creatorcontrib>Teng, Felicia Y.H.</creatorcontrib><creatorcontrib>Tang, Bor Luen</creatorcontrib><creatorcontrib>Hunt, David</creatorcontrib><creatorcontrib>Anderson, Patrick N.</creatorcontrib><creatorcontrib>Bethea, John R.</creatorcontrib><creatorcontrib>Schwab, Martin E.</creatorcontrib><creatorcontrib>Soriano, Eduardo</creatorcontrib><creatorcontrib>del Rı́o, José A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mingorance, Ana</au><au>Fontana, Xavier</au><au>Solé, Marta</au><au>Burgaya, Ferran</au><au>Ureña, Jesús M.</au><au>Teng, Felicia Y.H.</au><au>Tang, Bor Luen</au><au>Hunt, David</au><au>Anderson, Patrick N.</au><au>Bethea, John R.</au><au>Schwab, Martin E.</au><au>Soriano, Eduardo</au><au>del Rı́o, José A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2004-05-01</date><risdate>2004</risdate><volume>26</volume><issue>1</issue><spage>34</spage><epage>49</epage><pages>34-49</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the entorhino-hippocampal formation of developing and adult mice. We also provide evidence that Nogo-A does not inhibit embryonic hippocampal neurons, in contrast to other cell types such as cerebellar granule cells. Our results also show that Nogo and Nogo receptor mRNA are expressed in the adult by both principal and local-circuit hippocampal neurons, and that after lesion, Nogo-A is also transiently expressed by a subset of reactive astrocytes. Furthermore, we analyzed their regulation after kainic acid (KA) treatment and in response to the transection of the entorhino-hippocampal connection. We found that Nogo-A and Nogo receptor are differentially regulated after kainic acid or perforant pathway lesions. Lastly, we show that the regenerative potential of lesioned entorhino-hippocampal organotypic slice co-cultures is increased after blockage of Nogo-A with two IN-1 blocking antibodies. In conclusion, our results show that Nogo and its receptor might play key roles during development of hippocampal connections and that they are implicated in neuronal plasticity in the adult.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15121177</pmid><doi>10.1016/j.mcn.2004.01.001</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-7431
ispartof Molecular and cellular neuroscience, 2004-05, Vol.26 (1), p.34-49
issn 1044-7431
1095-9327
language eng
recordid cdi_proquest_miscellaneous_18064199
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Animals, Newborn
Antibodies - pharmacology
Astrocytes - cytology
Astrocytes - metabolism
Brain Injuries - chemically induced
Brain Injuries - physiopathology
COS Cells
Entorhinal Cortex - embryology
Entorhinal Cortex - injuries
Entorhinal Cortex - physiology
Fetus
Gene Expression Regulation, Developmental - genetics
Gliosis - metabolism
Gliosis - physiopathology
GPI-Linked Proteins
Growth Cones - metabolism
Growth Cones - ultrastructure
Hippocampus - embryology
Hippocampus - injuries
Hippocampus - physiology
Kainic Acid
Mice
Myelin Proteins - antagonists & inhibitors
Myelin Proteins - genetics
Myelin Proteins - metabolism
Nerve Regeneration - physiology
Neuronal Plasticity - physiology
Nogo Proteins
Nogo Receptor 1
Perforant Pathway - embryology
Perforant Pathway - injuries
Perforant Pathway - physiology
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Receptors, Peptide - genetics
Receptors, Peptide - metabolism
RNA, Messenger - metabolism
title Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Nogo%20and%20Nogo%20receptor%20during%20the%20development%20of%20the%20entorhino-hippocampal%20pathway%20and%20after%20adult%20hippocampal%20lesions&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Mingorance,%20Ana&rft.date=2004-05-01&rft.volume=26&rft.issue=1&rft.spage=34&rft.epage=49&rft.pages=34-49&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2004.01.001&rft_dat=%3Cproquest_cross%3E18064199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18064199&rft_id=info:pmid/15121177&rft_els_id=S104474310400003X&rfr_iscdi=true