Voluntary Exercise Increases Axonal Regeneration from Sensory Neurons
Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regenerat...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2004-06, Vol.101 (22), p.8473-8478 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8478 |
---|---|
container_issue | 22 |
container_start_page | 8473 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 101 |
creator | Molteni, Raffaella Zheng, Jun-Qi Ying, Zhe Gómez-Pinilla, Fernando Twiss, Jeffery L. Shooter, Eric M. |
description | Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regeneration through a neurotrophin-dependent mechanism. Dorsal root ganglion neurons showed an increase in neurite outgrowth when cultured from animals that had undergone 3 or 7 days of exercise compared with sedentary animals. Neurite length over 18-22 h in culture correlated directly with the distance that animals ran. The exercise-conditioned animals also showed enhanced regrowth of axons after an in vivo nerve crush injury. Sensory ganglia from the 3- and 7-day-exercised animals contained higher brain-derived neurotrophic factor, neurotrophin 3, synapsin I, and GAP43 mRNA levels than those from sedentary animals. Consistent with the rise in brain-derived neurotrophic factor and neurotrophin 3 during exercise, the increased growth potential of the exercise-conditioned animals required activation of the neurotrophin signaling in vivo during the exercise period but did not require new mRNA synthesis in culture. |
doi_str_mv | 10.1073/pnas.0401443101 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18063584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3372211</jstor_id><sourcerecordid>3372211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-622bc68d2ebe8e5180a1c21252d49c95c59303862c5ad7fbe0d11d29d321f29d3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgehSOHNBEHFAXNLO-CNxDhyqaoFKFUh8XS2vMylZZe2tnaDl3-NoV13gAKc5-HlHMx7GniKcIdTifOttOgMJKKVAwHtsgdBgWckG7rMFAK9LLbk8YY9SWgNAozQ8ZCeoUDVKwoItv4Vh8qONP4vljqLrExVX3kWyiVJxsQveDsUnuiFP0Y598EUXw6b4TD6FnPlAUww-PWYPOjskenKop-zr2-WXy_fl9cd3V5cX16VTDYxlxfnKVbrltCJNCjVYdBy54q1sXKOyEiB0xZ2ybd2tCFrEljet4NjN5ZS92ffdTqsNtY78GO1gtrHf5A1MsL3588X3381N-GEkB4k6518d8jHcTpRGs-mTo2GwnsKUTI1NXSsp_gvz6JVQWmb48i-4DlPMn5YMBxSKa40Zne-RiyGlSN3dxAhmvqOZ72iOd8yJ578vevSHw2Xw4gDm5LEdGs6NlvW8wut_C9NNwzDSbsz02Z6u0xjinRWi5hxR_AJA3rri</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201352881</pqid></control><display><type>article</type><title>Voluntary Exercise Increases Axonal Regeneration from Sensory Neurons</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Molteni, Raffaella ; Zheng, Jun-Qi ; Ying, Zhe ; Gómez-Pinilla, Fernando ; Twiss, Jeffery L. ; Shooter, Eric M.</creator><creatorcontrib>Molteni, Raffaella ; Zheng, Jun-Qi ; Ying, Zhe ; Gómez-Pinilla, Fernando ; Twiss, Jeffery L. ; Shooter, Eric M.</creatorcontrib><description>Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regeneration through a neurotrophin-dependent mechanism. Dorsal root ganglion neurons showed an increase in neurite outgrowth when cultured from animals that had undergone 3 or 7 days of exercise compared with sedentary animals. Neurite length over 18-22 h in culture correlated directly with the distance that animals ran. The exercise-conditioned animals also showed enhanced regrowth of axons after an in vivo nerve crush injury. Sensory ganglia from the 3- and 7-day-exercised animals contained higher brain-derived neurotrophic factor, neurotrophin 3, synapsin I, and GAP43 mRNA levels than those from sedentary animals. Consistent with the rise in brain-derived neurotrophic factor and neurotrophin 3 during exercise, the increased growth potential of the exercise-conditioned animals required activation of the neurotrophin signaling in vivo during the exercise period but did not require new mRNA synthesis in culture.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0401443101</identifier><identifier>PMID: 15159540</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Axons ; Biological Sciences ; Brain-Derived Neurotrophic Factor - metabolism ; Carbazoles - metabolism ; Cells, Cultured ; Enzyme Inhibitors - metabolism ; Exercise ; Ganglia, Spinal - cytology ; Indole Alkaloids ; Messenger RNA ; Nerve Growth Factors - metabolism ; Nerve Regeneration - physiology ; Nerves ; Neurites ; Neurons ; Neurons, Afferent - cytology ; Neurons, Afferent - physiology ; Neuroscience ; Physical Conditioning, Animal ; Receptor, trkA - metabolism ; Reverse transcriptase polymerase chain reaction ; RNA ; RNA, Messenger - metabolism ; Running ; Sciatic nerve ; Sciatic Nerve - metabolism ; Sciatic Nerve - pathology ; Sensory perception ; Synapsins ; Synapsins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-06, Vol.101 (22), p.8473-8478</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 1, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-622bc68d2ebe8e5180a1c21252d49c95c59303862c5ad7fbe0d11d29d321f29d3</citedby><cites>FETCH-LOGICAL-c590t-622bc68d2ebe8e5180a1c21252d49c95c59303862c5ad7fbe0d11d29d321f29d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3372211$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3372211$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15159540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Molteni, Raffaella</creatorcontrib><creatorcontrib>Zheng, Jun-Qi</creatorcontrib><creatorcontrib>Ying, Zhe</creatorcontrib><creatorcontrib>Gómez-Pinilla, Fernando</creatorcontrib><creatorcontrib>Twiss, Jeffery L.</creatorcontrib><creatorcontrib>Shooter, Eric M.</creatorcontrib><title>Voluntary Exercise Increases Axonal Regeneration from Sensory Neurons</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regeneration through a neurotrophin-dependent mechanism. Dorsal root ganglion neurons showed an increase in neurite outgrowth when cultured from animals that had undergone 3 or 7 days of exercise compared with sedentary animals. Neurite length over 18-22 h in culture correlated directly with the distance that animals ran. The exercise-conditioned animals also showed enhanced regrowth of axons after an in vivo nerve crush injury. Sensory ganglia from the 3- and 7-day-exercised animals contained higher brain-derived neurotrophic factor, neurotrophin 3, synapsin I, and GAP43 mRNA levels than those from sedentary animals. Consistent with the rise in brain-derived neurotrophic factor and neurotrophin 3 during exercise, the increased growth potential of the exercise-conditioned animals required activation of the neurotrophin signaling in vivo during the exercise period but did not require new mRNA synthesis in culture.</description><subject>Animals</subject><subject>Axons</subject><subject>Biological Sciences</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>Carbazoles - metabolism</subject><subject>Cells, Cultured</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Exercise</subject><subject>Ganglia, Spinal - cytology</subject><subject>Indole Alkaloids</subject><subject>Messenger RNA</subject><subject>Nerve Growth Factors - metabolism</subject><subject>Nerve Regeneration - physiology</subject><subject>Nerves</subject><subject>Neurites</subject><subject>Neurons</subject><subject>Neurons, Afferent - cytology</subject><subject>Neurons, Afferent - physiology</subject><subject>Neuroscience</subject><subject>Physical Conditioning, Animal</subject><subject>Receptor, trkA - metabolism</subject><subject>Reverse transcriptase polymerase chain reaction</subject><subject>RNA</subject><subject>RNA, Messenger - metabolism</subject><subject>Running</subject><subject>Sciatic nerve</subject><subject>Sciatic Nerve - metabolism</subject><subject>Sciatic Nerve - pathology</subject><subject>Sensory perception</subject><subject>Synapsins</subject><subject>Synapsins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v1DAQBmALgehSOHNBEHFAXNLO-CNxDhyqaoFKFUh8XS2vMylZZe2tnaDl3-NoV13gAKc5-HlHMx7GniKcIdTifOttOgMJKKVAwHtsgdBgWckG7rMFAK9LLbk8YY9SWgNAozQ8ZCeoUDVKwoItv4Vh8qONP4vljqLrExVX3kWyiVJxsQveDsUnuiFP0Y598EUXw6b4TD6FnPlAUww-PWYPOjskenKop-zr2-WXy_fl9cd3V5cX16VTDYxlxfnKVbrltCJNCjVYdBy54q1sXKOyEiB0xZ2ybd2tCFrEljet4NjN5ZS92ffdTqsNtY78GO1gtrHf5A1MsL3588X3381N-GEkB4k6518d8jHcTpRGs-mTo2GwnsKUTI1NXSsp_gvz6JVQWmb48i-4DlPMn5YMBxSKa40Zne-RiyGlSN3dxAhmvqOZ72iOd8yJ578vevSHw2Xw4gDm5LEdGs6NlvW8wut_C9NNwzDSbsz02Z6u0xjinRWi5hxR_AJA3rri</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Molteni, Raffaella</creator><creator>Zheng, Jun-Qi</creator><creator>Ying, Zhe</creator><creator>Gómez-Pinilla, Fernando</creator><creator>Twiss, Jeffery L.</creator><creator>Shooter, Eric M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040601</creationdate><title>Voluntary Exercise Increases Axonal Regeneration from Sensory Neurons</title><author>Molteni, Raffaella ; Zheng, Jun-Qi ; Ying, Zhe ; Gómez-Pinilla, Fernando ; Twiss, Jeffery L. ; Shooter, Eric M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-622bc68d2ebe8e5180a1c21252d49c95c59303862c5ad7fbe0d11d29d321f29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Axons</topic><topic>Biological Sciences</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>Carbazoles - metabolism</topic><topic>Cells, Cultured</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Exercise</topic><topic>Ganglia, Spinal - cytology</topic><topic>Indole Alkaloids</topic><topic>Messenger RNA</topic><topic>Nerve Growth Factors - metabolism</topic><topic>Nerve Regeneration - physiology</topic><topic>Nerves</topic><topic>Neurites</topic><topic>Neurons</topic><topic>Neurons, Afferent - cytology</topic><topic>Neurons, Afferent - physiology</topic><topic>Neuroscience</topic><topic>Physical Conditioning, Animal</topic><topic>Receptor, trkA - metabolism</topic><topic>Reverse transcriptase polymerase chain reaction</topic><topic>RNA</topic><topic>RNA, Messenger - metabolism</topic><topic>Running</topic><topic>Sciatic nerve</topic><topic>Sciatic Nerve - metabolism</topic><topic>Sciatic Nerve - pathology</topic><topic>Sensory perception</topic><topic>Synapsins</topic><topic>Synapsins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molteni, Raffaella</creatorcontrib><creatorcontrib>Zheng, Jun-Qi</creatorcontrib><creatorcontrib>Ying, Zhe</creatorcontrib><creatorcontrib>Gómez-Pinilla, Fernando</creatorcontrib><creatorcontrib>Twiss, Jeffery L.</creatorcontrib><creatorcontrib>Shooter, Eric M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molteni, Raffaella</au><au>Zheng, Jun-Qi</au><au>Ying, Zhe</au><au>Gómez-Pinilla, Fernando</au><au>Twiss, Jeffery L.</au><au>Shooter, Eric M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voluntary Exercise Increases Axonal Regeneration from Sensory Neurons</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-06-01</date><risdate>2004</risdate><volume>101</volume><issue>22</issue><spage>8473</spage><epage>8478</epage><pages>8473-8478</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regeneration through a neurotrophin-dependent mechanism. Dorsal root ganglion neurons showed an increase in neurite outgrowth when cultured from animals that had undergone 3 or 7 days of exercise compared with sedentary animals. Neurite length over 18-22 h in culture correlated directly with the distance that animals ran. The exercise-conditioned animals also showed enhanced regrowth of axons after an in vivo nerve crush injury. Sensory ganglia from the 3- and 7-day-exercised animals contained higher brain-derived neurotrophic factor, neurotrophin 3, synapsin I, and GAP43 mRNA levels than those from sedentary animals. Consistent with the rise in brain-derived neurotrophic factor and neurotrophin 3 during exercise, the increased growth potential of the exercise-conditioned animals required activation of the neurotrophin signaling in vivo during the exercise period but did not require new mRNA synthesis in culture.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15159540</pmid><doi>10.1073/pnas.0401443101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2004-06, Vol.101 (22), p.8473-8478 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_18063584 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Axons Biological Sciences Brain-Derived Neurotrophic Factor - metabolism Carbazoles - metabolism Cells, Cultured Enzyme Inhibitors - metabolism Exercise Ganglia, Spinal - cytology Indole Alkaloids Messenger RNA Nerve Growth Factors - metabolism Nerve Regeneration - physiology Nerves Neurites Neurons Neurons, Afferent - cytology Neurons, Afferent - physiology Neuroscience Physical Conditioning, Animal Receptor, trkA - metabolism Reverse transcriptase polymerase chain reaction RNA RNA, Messenger - metabolism Running Sciatic nerve Sciatic Nerve - metabolism Sciatic Nerve - pathology Sensory perception Synapsins Synapsins - metabolism |
title | Voluntary Exercise Increases Axonal Regeneration from Sensory Neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voluntary%20Exercise%20Increases%20Axonal%20Regeneration%20from%20Sensory%20Neurons&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Molteni,%20Raffaella&rft.date=2004-06-01&rft.volume=101&rft.issue=22&rft.spage=8473&rft.epage=8478&rft.pages=8473-8478&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0401443101&rft_dat=%3Cjstor_proqu%3E3372211%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201352881&rft_id=info:pmid/15159540&rft_jstor_id=3372211&rfr_iscdi=true |