Voluntary Exercise Increases Axonal Regeneration from Sensory Neurons

Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regenerat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2004-06, Vol.101 (22), p.8473-8478
Hauptverfasser: Molteni, Raffaella, Zheng, Jun-Qi, Ying, Zhe, Gómez-Pinilla, Fernando, Twiss, Jeffery L., Shooter, Eric M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8478
container_issue 22
container_start_page 8473
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 101
creator Molteni, Raffaella
Zheng, Jun-Qi
Ying, Zhe
Gómez-Pinilla, Fernando
Twiss, Jeffery L.
Shooter, Eric M.
description Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regeneration through a neurotrophin-dependent mechanism. Dorsal root ganglion neurons showed an increase in neurite outgrowth when cultured from animals that had undergone 3 or 7 days of exercise compared with sedentary animals. Neurite length over 18-22 h in culture correlated directly with the distance that animals ran. The exercise-conditioned animals also showed enhanced regrowth of axons after an in vivo nerve crush injury. Sensory ganglia from the 3- and 7-day-exercised animals contained higher brain-derived neurotrophic factor, neurotrophin 3, synapsin I, and GAP43 mRNA levels than those from sedentary animals. Consistent with the rise in brain-derived neurotrophic factor and neurotrophin 3 during exercise, the increased growth potential of the exercise-conditioned animals required activation of the neurotrophin signaling in vivo during the exercise period but did not require new mRNA synthesis in culture.
doi_str_mv 10.1073/pnas.0401443101
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18063584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3372211</jstor_id><sourcerecordid>3372211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-622bc68d2ebe8e5180a1c21252d49c95c59303862c5ad7fbe0d11d29d321f29d3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgehSOHNBEHFAXNLO-CNxDhyqaoFKFUh8XS2vMylZZe2tnaDl3-NoV13gAKc5-HlHMx7GniKcIdTifOttOgMJKKVAwHtsgdBgWckG7rMFAK9LLbk8YY9SWgNAozQ8ZCeoUDVKwoItv4Vh8qONP4vljqLrExVX3kWyiVJxsQveDsUnuiFP0Y598EUXw6b4TD6FnPlAUww-PWYPOjskenKop-zr2-WXy_fl9cd3V5cX16VTDYxlxfnKVbrltCJNCjVYdBy54q1sXKOyEiB0xZ2ybd2tCFrEljet4NjN5ZS92ffdTqsNtY78GO1gtrHf5A1MsL3588X3381N-GEkB4k6518d8jHcTpRGs-mTo2GwnsKUTI1NXSsp_gvz6JVQWmb48i-4DlPMn5YMBxSKa40Zne-RiyGlSN3dxAhmvqOZ72iOd8yJ578vevSHw2Xw4gDm5LEdGs6NlvW8wut_C9NNwzDSbsz02Z6u0xjinRWi5hxR_AJA3rri</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201352881</pqid></control><display><type>article</type><title>Voluntary Exercise Increases Axonal Regeneration from Sensory Neurons</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Molteni, Raffaella ; Zheng, Jun-Qi ; Ying, Zhe ; Gómez-Pinilla, Fernando ; Twiss, Jeffery L. ; Shooter, Eric M.</creator><creatorcontrib>Molteni, Raffaella ; Zheng, Jun-Qi ; Ying, Zhe ; Gómez-Pinilla, Fernando ; Twiss, Jeffery L. ; Shooter, Eric M.</creatorcontrib><description>Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regeneration through a neurotrophin-dependent mechanism. Dorsal root ganglion neurons showed an increase in neurite outgrowth when cultured from animals that had undergone 3 or 7 days of exercise compared with sedentary animals. Neurite length over 18-22 h in culture correlated directly with the distance that animals ran. The exercise-conditioned animals also showed enhanced regrowth of axons after an in vivo nerve crush injury. Sensory ganglia from the 3- and 7-day-exercised animals contained higher brain-derived neurotrophic factor, neurotrophin 3, synapsin I, and GAP43 mRNA levels than those from sedentary animals. Consistent with the rise in brain-derived neurotrophic factor and neurotrophin 3 during exercise, the increased growth potential of the exercise-conditioned animals required activation of the neurotrophin signaling in vivo during the exercise period but did not require new mRNA synthesis in culture.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0401443101</identifier><identifier>PMID: 15159540</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Axons ; Biological Sciences ; Brain-Derived Neurotrophic Factor - metabolism ; Carbazoles - metabolism ; Cells, Cultured ; Enzyme Inhibitors - metabolism ; Exercise ; Ganglia, Spinal - cytology ; Indole Alkaloids ; Messenger RNA ; Nerve Growth Factors - metabolism ; Nerve Regeneration - physiology ; Nerves ; Neurites ; Neurons ; Neurons, Afferent - cytology ; Neurons, Afferent - physiology ; Neuroscience ; Physical Conditioning, Animal ; Receptor, trkA - metabolism ; Reverse transcriptase polymerase chain reaction ; RNA ; RNA, Messenger - metabolism ; Running ; Sciatic nerve ; Sciatic Nerve - metabolism ; Sciatic Nerve - pathology ; Sensory perception ; Synapsins ; Synapsins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-06, Vol.101 (22), p.8473-8478</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 1, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-622bc68d2ebe8e5180a1c21252d49c95c59303862c5ad7fbe0d11d29d321f29d3</citedby><cites>FETCH-LOGICAL-c590t-622bc68d2ebe8e5180a1c21252d49c95c59303862c5ad7fbe0d11d29d321f29d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3372211$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3372211$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15159540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Molteni, Raffaella</creatorcontrib><creatorcontrib>Zheng, Jun-Qi</creatorcontrib><creatorcontrib>Ying, Zhe</creatorcontrib><creatorcontrib>Gómez-Pinilla, Fernando</creatorcontrib><creatorcontrib>Twiss, Jeffery L.</creatorcontrib><creatorcontrib>Shooter, Eric M.</creatorcontrib><title>Voluntary Exercise Increases Axonal Regeneration from Sensory Neurons</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regeneration through a neurotrophin-dependent mechanism. Dorsal root ganglion neurons showed an increase in neurite outgrowth when cultured from animals that had undergone 3 or 7 days of exercise compared with sedentary animals. Neurite length over 18-22 h in culture correlated directly with the distance that animals ran. The exercise-conditioned animals also showed enhanced regrowth of axons after an in vivo nerve crush injury. Sensory ganglia from the 3- and 7-day-exercised animals contained higher brain-derived neurotrophic factor, neurotrophin 3, synapsin I, and GAP43 mRNA levels than those from sedentary animals. Consistent with the rise in brain-derived neurotrophic factor and neurotrophin 3 during exercise, the increased growth potential of the exercise-conditioned animals required activation of the neurotrophin signaling in vivo during the exercise period but did not require new mRNA synthesis in culture.</description><subject>Animals</subject><subject>Axons</subject><subject>Biological Sciences</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>Carbazoles - metabolism</subject><subject>Cells, Cultured</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Exercise</subject><subject>Ganglia, Spinal - cytology</subject><subject>Indole Alkaloids</subject><subject>Messenger RNA</subject><subject>Nerve Growth Factors - metabolism</subject><subject>Nerve Regeneration - physiology</subject><subject>Nerves</subject><subject>Neurites</subject><subject>Neurons</subject><subject>Neurons, Afferent - cytology</subject><subject>Neurons, Afferent - physiology</subject><subject>Neuroscience</subject><subject>Physical Conditioning, Animal</subject><subject>Receptor, trkA - metabolism</subject><subject>Reverse transcriptase polymerase chain reaction</subject><subject>RNA</subject><subject>RNA, Messenger - metabolism</subject><subject>Running</subject><subject>Sciatic nerve</subject><subject>Sciatic Nerve - metabolism</subject><subject>Sciatic Nerve - pathology</subject><subject>Sensory perception</subject><subject>Synapsins</subject><subject>Synapsins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v1DAQBmALgehSOHNBEHFAXNLO-CNxDhyqaoFKFUh8XS2vMylZZe2tnaDl3-NoV13gAKc5-HlHMx7GniKcIdTifOttOgMJKKVAwHtsgdBgWckG7rMFAK9LLbk8YY9SWgNAozQ8ZCeoUDVKwoItv4Vh8qONP4vljqLrExVX3kWyiVJxsQveDsUnuiFP0Y598EUXw6b4TD6FnPlAUww-PWYPOjskenKop-zr2-WXy_fl9cd3V5cX16VTDYxlxfnKVbrltCJNCjVYdBy54q1sXKOyEiB0xZ2ybd2tCFrEljet4NjN5ZS92ffdTqsNtY78GO1gtrHf5A1MsL3588X3381N-GEkB4k6518d8jHcTpRGs-mTo2GwnsKUTI1NXSsp_gvz6JVQWmb48i-4DlPMn5YMBxSKa40Zne-RiyGlSN3dxAhmvqOZ72iOd8yJ578vevSHw2Xw4gDm5LEdGs6NlvW8wut_C9NNwzDSbsz02Z6u0xjinRWi5hxR_AJA3rri</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Molteni, Raffaella</creator><creator>Zheng, Jun-Qi</creator><creator>Ying, Zhe</creator><creator>Gómez-Pinilla, Fernando</creator><creator>Twiss, Jeffery L.</creator><creator>Shooter, Eric M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040601</creationdate><title>Voluntary Exercise Increases Axonal Regeneration from Sensory Neurons</title><author>Molteni, Raffaella ; Zheng, Jun-Qi ; Ying, Zhe ; Gómez-Pinilla, Fernando ; Twiss, Jeffery L. ; Shooter, Eric M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-622bc68d2ebe8e5180a1c21252d49c95c59303862c5ad7fbe0d11d29d321f29d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Axons</topic><topic>Biological Sciences</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>Carbazoles - metabolism</topic><topic>Cells, Cultured</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Exercise</topic><topic>Ganglia, Spinal - cytology</topic><topic>Indole Alkaloids</topic><topic>Messenger RNA</topic><topic>Nerve Growth Factors - metabolism</topic><topic>Nerve Regeneration - physiology</topic><topic>Nerves</topic><topic>Neurites</topic><topic>Neurons</topic><topic>Neurons, Afferent - cytology</topic><topic>Neurons, Afferent - physiology</topic><topic>Neuroscience</topic><topic>Physical Conditioning, Animal</topic><topic>Receptor, trkA - metabolism</topic><topic>Reverse transcriptase polymerase chain reaction</topic><topic>RNA</topic><topic>RNA, Messenger - metabolism</topic><topic>Running</topic><topic>Sciatic nerve</topic><topic>Sciatic Nerve - metabolism</topic><topic>Sciatic Nerve - pathology</topic><topic>Sensory perception</topic><topic>Synapsins</topic><topic>Synapsins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molteni, Raffaella</creatorcontrib><creatorcontrib>Zheng, Jun-Qi</creatorcontrib><creatorcontrib>Ying, Zhe</creatorcontrib><creatorcontrib>Gómez-Pinilla, Fernando</creatorcontrib><creatorcontrib>Twiss, Jeffery L.</creatorcontrib><creatorcontrib>Shooter, Eric M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molteni, Raffaella</au><au>Zheng, Jun-Qi</au><au>Ying, Zhe</au><au>Gómez-Pinilla, Fernando</au><au>Twiss, Jeffery L.</au><au>Shooter, Eric M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voluntary Exercise Increases Axonal Regeneration from Sensory Neurons</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-06-01</date><risdate>2004</risdate><volume>101</volume><issue>22</issue><spage>8473</spage><epage>8478</epage><pages>8473-8478</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recent advances in understanding the role of neurotrophins on activity-dependent plasticity have provided insight into how behavior can affect specific aspects of neuronal biology. We present evidence that voluntary exercise can prime adult dorsal root ganglion neurons for increased axonal regeneration through a neurotrophin-dependent mechanism. Dorsal root ganglion neurons showed an increase in neurite outgrowth when cultured from animals that had undergone 3 or 7 days of exercise compared with sedentary animals. Neurite length over 18-22 h in culture correlated directly with the distance that animals ran. The exercise-conditioned animals also showed enhanced regrowth of axons after an in vivo nerve crush injury. Sensory ganglia from the 3- and 7-day-exercised animals contained higher brain-derived neurotrophic factor, neurotrophin 3, synapsin I, and GAP43 mRNA levels than those from sedentary animals. Consistent with the rise in brain-derived neurotrophic factor and neurotrophin 3 during exercise, the increased growth potential of the exercise-conditioned animals required activation of the neurotrophin signaling in vivo during the exercise period but did not require new mRNA synthesis in culture.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15159540</pmid><doi>10.1073/pnas.0401443101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2004-06, Vol.101 (22), p.8473-8478
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_18063584
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Axons
Biological Sciences
Brain-Derived Neurotrophic Factor - metabolism
Carbazoles - metabolism
Cells, Cultured
Enzyme Inhibitors - metabolism
Exercise
Ganglia, Spinal - cytology
Indole Alkaloids
Messenger RNA
Nerve Growth Factors - metabolism
Nerve Regeneration - physiology
Nerves
Neurites
Neurons
Neurons, Afferent - cytology
Neurons, Afferent - physiology
Neuroscience
Physical Conditioning, Animal
Receptor, trkA - metabolism
Reverse transcriptase polymerase chain reaction
RNA
RNA, Messenger - metabolism
Running
Sciatic nerve
Sciatic Nerve - metabolism
Sciatic Nerve - pathology
Sensory perception
Synapsins
Synapsins - metabolism
title Voluntary Exercise Increases Axonal Regeneration from Sensory Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voluntary%20Exercise%20Increases%20Axonal%20Regeneration%20from%20Sensory%20Neurons&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Molteni,%20Raffaella&rft.date=2004-06-01&rft.volume=101&rft.issue=22&rft.spage=8473&rft.epage=8478&rft.pages=8473-8478&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0401443101&rft_dat=%3Cjstor_proqu%3E3372211%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201352881&rft_id=info:pmid/15159540&rft_jstor_id=3372211&rfr_iscdi=true