Analysis of a minimal Rho-GTPase circuit regulating cell shape

Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical biology 2016-07, Vol.13 (4), p.046001-046001
Hauptverfasser: Holmes, William R, Edelstein-Keshet, Leah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 046001
container_issue 4
container_start_page 046001
container_title Physical biology
container_volume 13
creator Holmes, William R
Edelstein-Keshet, Leah
description Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.
doi_str_mv 10.1088/1478-3975/13/4/046001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1806076313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1806076313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-9eb993e956e54c7cb17756f183afb2dc7ba1878e30545646a62c646b78b79f4d3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMobk7_BCUn8VKbNGmSXgQZOoWBIvMckjTdMtq1Ju1h_70tncODeHqPx_d-fQBcY3SPkRAxplxEJONpjElMY0QZQvgETI_102PO-ARchLBFKMkSxM_BJOGUUIT5FDw87lS5Dy7AuoAKVm7nKlXCj00dLVbvKlhonDeda6G3665UrdutobFlCcNGNfYSnBWqDPbqEGfg8_lpNX-Jlm-L1_njMjKUijbKrM4yYrOU2ZQabjTmPGUFFkQVOskN1woLLixBKU0ZZYolpg-aC82zguZkBu7GuY2vvzobWlm5MJyhdrbugsQCMcQZwaRH0xE1vg7B20I2vv_J7yVGclAnBy1yUCQxkVSO6vq-m8OKTlc2P3b9uOqB2xFwdSO3ded7c0E2-vcU2eRFD-I_wP-3fwMK2YMn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806076313</pqid></control><display><type>article</type><title>Analysis of a minimal Rho-GTPase circuit regulating cell shape</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Holmes, William R ; Edelstein-Keshet, Leah</creator><creatorcontrib>Holmes, William R ; Edelstein-Keshet, Leah</creatorcontrib><description>Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.</description><identifier>ISSN: 1478-3967</identifier><identifier>EISSN: 1478-3975</identifier><identifier>DOI: 10.1088/1478-3975/13/4/046001</identifier><identifier>PMID: 27434017</identifier><identifier>CODEN: PBHIAT</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>ameboid/mesenchymal motility ; Cell Movement ; Cell Shape ; Cytoskeleton - metabolism ; Eukaryota - cytology ; Eukaryota - enzymology ; Eukaryota - metabolism ; local perturbation analysis ; Models, Biological ; rac GTP-Binding Proteins - metabolism ; Rac-Rho ; rho GTP-Binding Proteins - metabolism</subject><ispartof>Physical biology, 2016-07, Vol.13 (4), p.046001-046001</ispartof><rights>2016 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-9eb993e956e54c7cb17756f183afb2dc7ba1878e30545646a62c646b78b79f4d3</citedby><cites>FETCH-LOGICAL-c448t-9eb993e956e54c7cb17756f183afb2dc7ba1878e30545646a62c646b78b79f4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1478-3975/13/4/046001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27434017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holmes, William R</creatorcontrib><creatorcontrib>Edelstein-Keshet, Leah</creatorcontrib><title>Analysis of a minimal Rho-GTPase circuit regulating cell shape</title><title>Physical biology</title><addtitle>PB</addtitle><addtitle>Phys. Biol</addtitle><description>Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.</description><subject>ameboid/mesenchymal motility</subject><subject>Cell Movement</subject><subject>Cell Shape</subject><subject>Cytoskeleton - metabolism</subject><subject>Eukaryota - cytology</subject><subject>Eukaryota - enzymology</subject><subject>Eukaryota - metabolism</subject><subject>local perturbation analysis</subject><subject>Models, Biological</subject><subject>rac GTP-Binding Proteins - metabolism</subject><subject>Rac-Rho</subject><subject>rho GTP-Binding Proteins - metabolism</subject><issn>1478-3967</issn><issn>1478-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9LwzAUgIMobk7_BCUn8VKbNGmSXgQZOoWBIvMckjTdMtq1Ju1h_70tncODeHqPx_d-fQBcY3SPkRAxplxEJONpjElMY0QZQvgETI_102PO-ARchLBFKMkSxM_BJOGUUIT5FDw87lS5Dy7AuoAKVm7nKlXCj00dLVbvKlhonDeda6G3665UrdutobFlCcNGNfYSnBWqDPbqEGfg8_lpNX-Jlm-L1_njMjKUijbKrM4yYrOU2ZQabjTmPGUFFkQVOskN1woLLixBKU0ZZYolpg-aC82zguZkBu7GuY2vvzobWlm5MJyhdrbugsQCMcQZwaRH0xE1vg7B20I2vv_J7yVGclAnBy1yUCQxkVSO6vq-m8OKTlc2P3b9uOqB2xFwdSO3ded7c0E2-vcU2eRFD-I_wP-3fwMK2YMn</recordid><startdate>20160718</startdate><enddate>20160718</enddate><creator>Holmes, William R</creator><creator>Edelstein-Keshet, Leah</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160718</creationdate><title>Analysis of a minimal Rho-GTPase circuit regulating cell shape</title><author>Holmes, William R ; Edelstein-Keshet, Leah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-9eb993e956e54c7cb17756f183afb2dc7ba1878e30545646a62c646b78b79f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ameboid/mesenchymal motility</topic><topic>Cell Movement</topic><topic>Cell Shape</topic><topic>Cytoskeleton - metabolism</topic><topic>Eukaryota - cytology</topic><topic>Eukaryota - enzymology</topic><topic>Eukaryota - metabolism</topic><topic>local perturbation analysis</topic><topic>Models, Biological</topic><topic>rac GTP-Binding Proteins - metabolism</topic><topic>Rac-Rho</topic><topic>rho GTP-Binding Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, William R</creatorcontrib><creatorcontrib>Edelstein-Keshet, Leah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, William R</au><au>Edelstein-Keshet, Leah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of a minimal Rho-GTPase circuit regulating cell shape</atitle><jtitle>Physical biology</jtitle><stitle>PB</stitle><addtitle>Phys. Biol</addtitle><date>2016-07-18</date><risdate>2016</risdate><volume>13</volume><issue>4</issue><spage>046001</spage><epage>046001</epage><pages>046001-046001</pages><issn>1478-3967</issn><eissn>1478-3975</eissn><coden>PBHIAT</coden><abstract>Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27434017</pmid><doi>10.1088/1478-3975/13/4/046001</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1478-3967
ispartof Physical biology, 2016-07, Vol.13 (4), p.046001-046001
issn 1478-3967
1478-3975
language eng
recordid cdi_proquest_miscellaneous_1806076313
source MEDLINE; Institute of Physics Journals
subjects ameboid/mesenchymal motility
Cell Movement
Cell Shape
Cytoskeleton - metabolism
Eukaryota - cytology
Eukaryota - enzymology
Eukaryota - metabolism
local perturbation analysis
Models, Biological
rac GTP-Binding Proteins - metabolism
Rac-Rho
rho GTP-Binding Proteins - metabolism
title Analysis of a minimal Rho-GTPase circuit regulating cell shape
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20a%20minimal%20Rho-GTPase%20circuit%20regulating%20cell%20shape&rft.jtitle=Physical%20biology&rft.au=Holmes,%20William%20R&rft.date=2016-07-18&rft.volume=13&rft.issue=4&rft.spage=046001&rft.epage=046001&rft.pages=046001-046001&rft.issn=1478-3967&rft.eissn=1478-3975&rft.coden=PBHIAT&rft_id=info:doi/10.1088/1478-3975/13/4/046001&rft_dat=%3Cproquest_pubme%3E1806076313%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1806076313&rft_id=info:pmid/27434017&rfr_iscdi=true