Analysis of a minimal Rho-GTPase circuit regulating cell shape
Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent...
Gespeichert in:
Veröffentlicht in: | Physical biology 2016-07, Vol.13 (4), p.046001-046001 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 046001 |
---|---|
container_issue | 4 |
container_start_page | 046001 |
container_title | Physical biology |
container_volume | 13 |
creator | Holmes, William R Edelstein-Keshet, Leah |
description | Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology. |
doi_str_mv | 10.1088/1478-3975/13/4/046001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1806076313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1806076313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-9eb993e956e54c7cb17756f183afb2dc7ba1878e30545646a62c646b78b79f4d3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMobk7_BCUn8VKbNGmSXgQZOoWBIvMckjTdMtq1Ju1h_70tncODeHqPx_d-fQBcY3SPkRAxplxEJONpjElMY0QZQvgETI_102PO-ARchLBFKMkSxM_BJOGUUIT5FDw87lS5Dy7AuoAKVm7nKlXCj00dLVbvKlhonDeda6G3665UrdutobFlCcNGNfYSnBWqDPbqEGfg8_lpNX-Jlm-L1_njMjKUijbKrM4yYrOU2ZQabjTmPGUFFkQVOskN1woLLixBKU0ZZYolpg-aC82zguZkBu7GuY2vvzobWlm5MJyhdrbugsQCMcQZwaRH0xE1vg7B20I2vv_J7yVGclAnBy1yUCQxkVSO6vq-m8OKTlc2P3b9uOqB2xFwdSO3ded7c0E2-vcU2eRFD-I_wP-3fwMK2YMn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806076313</pqid></control><display><type>article</type><title>Analysis of a minimal Rho-GTPase circuit regulating cell shape</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Holmes, William R ; Edelstein-Keshet, Leah</creator><creatorcontrib>Holmes, William R ; Edelstein-Keshet, Leah</creatorcontrib><description>Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.</description><identifier>ISSN: 1478-3967</identifier><identifier>EISSN: 1478-3975</identifier><identifier>DOI: 10.1088/1478-3975/13/4/046001</identifier><identifier>PMID: 27434017</identifier><identifier>CODEN: PBHIAT</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>ameboid/mesenchymal motility ; Cell Movement ; Cell Shape ; Cytoskeleton - metabolism ; Eukaryota - cytology ; Eukaryota - enzymology ; Eukaryota - metabolism ; local perturbation analysis ; Models, Biological ; rac GTP-Binding Proteins - metabolism ; Rac-Rho ; rho GTP-Binding Proteins - metabolism</subject><ispartof>Physical biology, 2016-07, Vol.13 (4), p.046001-046001</ispartof><rights>2016 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-9eb993e956e54c7cb17756f183afb2dc7ba1878e30545646a62c646b78b79f4d3</citedby><cites>FETCH-LOGICAL-c448t-9eb993e956e54c7cb17756f183afb2dc7ba1878e30545646a62c646b78b79f4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1478-3975/13/4/046001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27434017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holmes, William R</creatorcontrib><creatorcontrib>Edelstein-Keshet, Leah</creatorcontrib><title>Analysis of a minimal Rho-GTPase circuit regulating cell shape</title><title>Physical biology</title><addtitle>PB</addtitle><addtitle>Phys. Biol</addtitle><description>Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.</description><subject>ameboid/mesenchymal motility</subject><subject>Cell Movement</subject><subject>Cell Shape</subject><subject>Cytoskeleton - metabolism</subject><subject>Eukaryota - cytology</subject><subject>Eukaryota - enzymology</subject><subject>Eukaryota - metabolism</subject><subject>local perturbation analysis</subject><subject>Models, Biological</subject><subject>rac GTP-Binding Proteins - metabolism</subject><subject>Rac-Rho</subject><subject>rho GTP-Binding Proteins - metabolism</subject><issn>1478-3967</issn><issn>1478-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9LwzAUgIMobk7_BCUn8VKbNGmSXgQZOoWBIvMckjTdMtq1Ju1h_70tncODeHqPx_d-fQBcY3SPkRAxplxEJONpjElMY0QZQvgETI_102PO-ARchLBFKMkSxM_BJOGUUIT5FDw87lS5Dy7AuoAKVm7nKlXCj00dLVbvKlhonDeda6G3665UrdutobFlCcNGNfYSnBWqDPbqEGfg8_lpNX-Jlm-L1_njMjKUijbKrM4yYrOU2ZQabjTmPGUFFkQVOskN1woLLixBKU0ZZYolpg-aC82zguZkBu7GuY2vvzobWlm5MJyhdrbugsQCMcQZwaRH0xE1vg7B20I2vv_J7yVGclAnBy1yUCQxkVSO6vq-m8OKTlc2P3b9uOqB2xFwdSO3ded7c0E2-vcU2eRFD-I_wP-3fwMK2YMn</recordid><startdate>20160718</startdate><enddate>20160718</enddate><creator>Holmes, William R</creator><creator>Edelstein-Keshet, Leah</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160718</creationdate><title>Analysis of a minimal Rho-GTPase circuit regulating cell shape</title><author>Holmes, William R ; Edelstein-Keshet, Leah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-9eb993e956e54c7cb17756f183afb2dc7ba1878e30545646a62c646b78b79f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ameboid/mesenchymal motility</topic><topic>Cell Movement</topic><topic>Cell Shape</topic><topic>Cytoskeleton - metabolism</topic><topic>Eukaryota - cytology</topic><topic>Eukaryota - enzymology</topic><topic>Eukaryota - metabolism</topic><topic>local perturbation analysis</topic><topic>Models, Biological</topic><topic>rac GTP-Binding Proteins - metabolism</topic><topic>Rac-Rho</topic><topic>rho GTP-Binding Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, William R</creatorcontrib><creatorcontrib>Edelstein-Keshet, Leah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, William R</au><au>Edelstein-Keshet, Leah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of a minimal Rho-GTPase circuit regulating cell shape</atitle><jtitle>Physical biology</jtitle><stitle>PB</stitle><addtitle>Phys. Biol</addtitle><date>2016-07-18</date><risdate>2016</risdate><volume>13</volume><issue>4</issue><spage>046001</spage><epage>046001</epage><pages>046001-046001</pages><issn>1478-3967</issn><eissn>1478-3975</eissn><coden>PBHIAT</coden><abstract>Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27434017</pmid><doi>10.1088/1478-3975/13/4/046001</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1478-3967 |
ispartof | Physical biology, 2016-07, Vol.13 (4), p.046001-046001 |
issn | 1478-3967 1478-3975 |
language | eng |
recordid | cdi_proquest_miscellaneous_1806076313 |
source | MEDLINE; Institute of Physics Journals |
subjects | ameboid/mesenchymal motility Cell Movement Cell Shape Cytoskeleton - metabolism Eukaryota - cytology Eukaryota - enzymology Eukaryota - metabolism local perturbation analysis Models, Biological rac GTP-Binding Proteins - metabolism Rac-Rho rho GTP-Binding Proteins - metabolism |
title | Analysis of a minimal Rho-GTPase circuit regulating cell shape |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20a%20minimal%20Rho-GTPase%20circuit%20regulating%20cell%20shape&rft.jtitle=Physical%20biology&rft.au=Holmes,%20William%20R&rft.date=2016-07-18&rft.volume=13&rft.issue=4&rft.spage=046001&rft.epage=046001&rft.pages=046001-046001&rft.issn=1478-3967&rft.eissn=1478-3975&rft.coden=PBHIAT&rft_id=info:doi/10.1088/1478-3975/13/4/046001&rft_dat=%3Cproquest_pubme%3E1806076313%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1806076313&rft_id=info:pmid/27434017&rfr_iscdi=true |