Establishing gene function by mutagenesis in Arabidopsis thaliana
The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies h...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2004-09, Vol.39 (5), p.682-696 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 696 |
---|---|
container_issue | 5 |
container_start_page | 682 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 39 |
creator | Ostergaard, L Yanofsky, M.F |
description | The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies have proven efficient in addressing the first two questions as shown in a recent report (Yamada et al., 2003). However, assessing the function of every gene in every cell will require years of careful analyses of the phenotypes caused by mutations in each gene. Current progress in generating large numbers of molecular markers and near-saturation insertion mutant collections has immensely facilitated functional genomics studies in Arabidopsis. In this review, we focus on how gene function can be revealed through the analysis of mutants by either forward or reverse genetics. These mutants generally fall into two distinct classes. The first class typically includes point mutations or small deletions derived from chemical or fast neutron mutagenesis whereas the second class includes insertions of transferred-DNA or transposon elements. We describe the current methods that are used to identify the gene corresponding to these mutations, which can then be used as a probe to further dissect its function. |
doi_str_mv | 10.1111/j.1365-313x.2004.02149.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18059752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18059752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5369-3fa59f57f3fc7b68480e574a6ad48e6b50d5cde8961d0a4784d6ba3980ab0aae3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRbK3-Bc3JW-Js9iPZg4dS6hcFBVvwtkySTbslTWo2wfbfm9iKV-cyX-87Aw8hHoWAdnG3DiiTwmeU7YIQgAcQUq6C3QkZ_i4-TskQlAQ_4jQckAvn1gA0YpKfkwEVjArJwiEZT12DSWHdypZLb2lK4-VtmTa2Kr1k723aBvuhs86zpTeuMbFZte3bZoWFxRIvyVmOhTNXxzwii4fpfPLkz14fnyfjmZ8KJpXPchQqF1HO8jRKZMxjMCLiKDHjsZGJgEykmYmVpBkgj2KeyQSZigETQDRsRG4Pd7d19dka1-iNdakpCixN1TpNYxAqEmEnjA_CtK6cq02ut7XdYL3XFHSPT691T0n3lHSPT__g07vOen380SYbk_0Zj7w6wf1B8GULs__3YT1_e-mrzn9z8OdYaVzW1unFewiUASghQyXZN3OEiEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18059752</pqid></control><display><type>article</type><title>Establishing gene function by mutagenesis in Arabidopsis thaliana</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ostergaard, L ; Yanofsky, M.F</creator><creatorcontrib>Ostergaard, L ; Yanofsky, M.F</creatorcontrib><description>The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies have proven efficient in addressing the first two questions as shown in a recent report (Yamada et al., 2003). However, assessing the function of every gene in every cell will require years of careful analyses of the phenotypes caused by mutations in each gene. Current progress in generating large numbers of molecular markers and near-saturation insertion mutant collections has immensely facilitated functional genomics studies in Arabidopsis. In this review, we focus on how gene function can be revealed through the analysis of mutants by either forward or reverse genetics. These mutants generally fall into two distinct classes. The first class typically includes point mutations or small deletions derived from chemical or fast neutron mutagenesis whereas the second class includes insertions of transferred-DNA or transposon elements. We describe the current methods that are used to identify the gene corresponding to these mutations, which can then be used as a probe to further dissect its function.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313x.2004.02149.x</identifier><identifier>PMID: 15315632</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis thaliana ; Base Sequence ; DNA Transposable Elements ; DNA, Bacterial - genetics ; forward genetics ; functional genomics ; gene deletion ; gene function ; Genes, Plant ; genome ; genomics ; insertional mutagenesis ; literature reviews ; molecular cloning ; Mutagenesis ; mutants ; Phenotype ; plant genetics ; point mutation ; Polymerase Chain Reaction ; reverse genetics ; transfer DNA ; transposons</subject><ispartof>The Plant journal : for cell and molecular biology, 2004-09, Vol.39 (5), p.682-696</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5369-3fa59f57f3fc7b68480e574a6ad48e6b50d5cde8961d0a4784d6ba3980ab0aae3</citedby><cites>FETCH-LOGICAL-c5369-3fa59f57f3fc7b68480e574a6ad48e6b50d5cde8961d0a4784d6ba3980ab0aae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2004.02149.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2004.02149.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15315632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostergaard, L</creatorcontrib><creatorcontrib>Yanofsky, M.F</creatorcontrib><title>Establishing gene function by mutagenesis in Arabidopsis thaliana</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies have proven efficient in addressing the first two questions as shown in a recent report (Yamada et al., 2003). However, assessing the function of every gene in every cell will require years of careful analyses of the phenotypes caused by mutations in each gene. Current progress in generating large numbers of molecular markers and near-saturation insertion mutant collections has immensely facilitated functional genomics studies in Arabidopsis. In this review, we focus on how gene function can be revealed through the analysis of mutants by either forward or reverse genetics. These mutants generally fall into two distinct classes. The first class typically includes point mutations or small deletions derived from chemical or fast neutron mutagenesis whereas the second class includes insertions of transferred-DNA or transposon elements. We describe the current methods that are used to identify the gene corresponding to these mutations, which can then be used as a probe to further dissect its function.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Base Sequence</subject><subject>DNA Transposable Elements</subject><subject>DNA, Bacterial - genetics</subject><subject>forward genetics</subject><subject>functional genomics</subject><subject>gene deletion</subject><subject>gene function</subject><subject>Genes, Plant</subject><subject>genome</subject><subject>genomics</subject><subject>insertional mutagenesis</subject><subject>literature reviews</subject><subject>molecular cloning</subject><subject>Mutagenesis</subject><subject>mutants</subject><subject>Phenotype</subject><subject>plant genetics</subject><subject>point mutation</subject><subject>Polymerase Chain Reaction</subject><subject>reverse genetics</subject><subject>transfer DNA</subject><subject>transposons</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1Lw0AQhhdRbK3-Bc3JW-Js9iPZg4dS6hcFBVvwtkySTbslTWo2wfbfm9iKV-cyX-87Aw8hHoWAdnG3DiiTwmeU7YIQgAcQUq6C3QkZ_i4-TskQlAQ_4jQckAvn1gA0YpKfkwEVjArJwiEZT12DSWHdypZLb2lK4-VtmTa2Kr1k723aBvuhs86zpTeuMbFZte3bZoWFxRIvyVmOhTNXxzwii4fpfPLkz14fnyfjmZ8KJpXPchQqF1HO8jRKZMxjMCLiKDHjsZGJgEykmYmVpBkgj2KeyQSZigETQDRsRG4Pd7d19dka1-iNdakpCixN1TpNYxAqEmEnjA_CtK6cq02ut7XdYL3XFHSPT691T0n3lHSPT__g07vOen380SYbk_0Zj7w6wf1B8GULs__3YT1_e-mrzn9z8OdYaVzW1unFewiUASghQyXZN3OEiEA</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Ostergaard, L</creator><creator>Yanofsky, M.F</creator><general>Blackwell Science Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200409</creationdate><title>Establishing gene function by mutagenesis in Arabidopsis thaliana</title><author>Ostergaard, L ; Yanofsky, M.F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5369-3fa59f57f3fc7b68480e574a6ad48e6b50d5cde8961d0a4784d6ba3980ab0aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Base Sequence</topic><topic>DNA Transposable Elements</topic><topic>DNA, Bacterial - genetics</topic><topic>forward genetics</topic><topic>functional genomics</topic><topic>gene deletion</topic><topic>gene function</topic><topic>Genes, Plant</topic><topic>genome</topic><topic>genomics</topic><topic>insertional mutagenesis</topic><topic>literature reviews</topic><topic>molecular cloning</topic><topic>Mutagenesis</topic><topic>mutants</topic><topic>Phenotype</topic><topic>plant genetics</topic><topic>point mutation</topic><topic>Polymerase Chain Reaction</topic><topic>reverse genetics</topic><topic>transfer DNA</topic><topic>transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostergaard, L</creatorcontrib><creatorcontrib>Yanofsky, M.F</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostergaard, L</au><au>Yanofsky, M.F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishing gene function by mutagenesis in Arabidopsis thaliana</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2004-09</date><risdate>2004</risdate><volume>39</volume><issue>5</issue><spage>682</spage><epage>696</epage><pages>682-696</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies have proven efficient in addressing the first two questions as shown in a recent report (Yamada et al., 2003). However, assessing the function of every gene in every cell will require years of careful analyses of the phenotypes caused by mutations in each gene. Current progress in generating large numbers of molecular markers and near-saturation insertion mutant collections has immensely facilitated functional genomics studies in Arabidopsis. In this review, we focus on how gene function can be revealed through the analysis of mutants by either forward or reverse genetics. These mutants generally fall into two distinct classes. The first class typically includes point mutations or small deletions derived from chemical or fast neutron mutagenesis whereas the second class includes insertions of transferred-DNA or transposon elements. We describe the current methods that are used to identify the gene corresponding to these mutations, which can then be used as a probe to further dissect its function.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15315632</pmid><doi>10.1111/j.1365-313x.2004.02149.x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2004-09, Vol.39 (5), p.682-696 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_18059752 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Arabidopsis Arabidopsis - genetics Arabidopsis thaliana Base Sequence DNA Transposable Elements DNA, Bacterial - genetics forward genetics functional genomics gene deletion gene function Genes, Plant genome genomics insertional mutagenesis literature reviews molecular cloning Mutagenesis mutants Phenotype plant genetics point mutation Polymerase Chain Reaction reverse genetics transfer DNA transposons |
title | Establishing gene function by mutagenesis in Arabidopsis thaliana |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishing%20gene%20function%20by%20mutagenesis%20in%20Arabidopsis%20thaliana&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Ostergaard,%20L&rft.date=2004-09&rft.volume=39&rft.issue=5&rft.spage=682&rft.epage=696&rft.pages=682-696&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313x.2004.02149.x&rft_dat=%3Cproquest_cross%3E18059752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18059752&rft_id=info:pmid/15315632&rfr_iscdi=true |