Establishing gene function by mutagenesis in Arabidopsis thaliana

The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2004-09, Vol.39 (5), p.682-696
Hauptverfasser: Ostergaard, L, Yanofsky, M.F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 696
container_issue 5
container_start_page 682
container_title The Plant journal : for cell and molecular biology
container_volume 39
creator Ostergaard, L
Yanofsky, M.F
description The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies have proven efficient in addressing the first two questions as shown in a recent report (Yamada et al., 2003). However, assessing the function of every gene in every cell will require years of careful analyses of the phenotypes caused by mutations in each gene. Current progress in generating large numbers of molecular markers and near-saturation insertion mutant collections has immensely facilitated functional genomics studies in Arabidopsis. In this review, we focus on how gene function can be revealed through the analysis of mutants by either forward or reverse genetics. These mutants generally fall into two distinct classes. The first class typically includes point mutations or small deletions derived from chemical or fast neutron mutagenesis whereas the second class includes insertions of transferred-DNA or transposon elements. We describe the current methods that are used to identify the gene corresponding to these mutations, which can then be used as a probe to further dissect its function.
doi_str_mv 10.1111/j.1365-313x.2004.02149.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18059752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18059752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5369-3fa59f57f3fc7b68480e574a6ad48e6b50d5cde8961d0a4784d6ba3980ab0aae3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRbK3-Bc3JW-Js9iPZg4dS6hcFBVvwtkySTbslTWo2wfbfm9iKV-cyX-87Aw8hHoWAdnG3DiiTwmeU7YIQgAcQUq6C3QkZ_i4-TskQlAQ_4jQckAvn1gA0YpKfkwEVjArJwiEZT12DSWHdypZLb2lK4-VtmTa2Kr1k723aBvuhs86zpTeuMbFZte3bZoWFxRIvyVmOhTNXxzwii4fpfPLkz14fnyfjmZ8KJpXPchQqF1HO8jRKZMxjMCLiKDHjsZGJgEykmYmVpBkgj2KeyQSZigETQDRsRG4Pd7d19dka1-iNdakpCixN1TpNYxAqEmEnjA_CtK6cq02ut7XdYL3XFHSPT691T0n3lHSPT__g07vOen380SYbk_0Zj7w6wf1B8GULs__3YT1_e-mrzn9z8OdYaVzW1unFewiUASghQyXZN3OEiEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18059752</pqid></control><display><type>article</type><title>Establishing gene function by mutagenesis in Arabidopsis thaliana</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ostergaard, L ; Yanofsky, M.F</creator><creatorcontrib>Ostergaard, L ; Yanofsky, M.F</creatorcontrib><description>The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies have proven efficient in addressing the first two questions as shown in a recent report (Yamada et al., 2003). However, assessing the function of every gene in every cell will require years of careful analyses of the phenotypes caused by mutations in each gene. Current progress in generating large numbers of molecular markers and near-saturation insertion mutant collections has immensely facilitated functional genomics studies in Arabidopsis. In this review, we focus on how gene function can be revealed through the analysis of mutants by either forward or reverse genetics. These mutants generally fall into two distinct classes. The first class typically includes point mutations or small deletions derived from chemical or fast neutron mutagenesis whereas the second class includes insertions of transferred-DNA or transposon elements. We describe the current methods that are used to identify the gene corresponding to these mutations, which can then be used as a probe to further dissect its function.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313x.2004.02149.x</identifier><identifier>PMID: 15315632</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis thaliana ; Base Sequence ; DNA Transposable Elements ; DNA, Bacterial - genetics ; forward genetics ; functional genomics ; gene deletion ; gene function ; Genes, Plant ; genome ; genomics ; insertional mutagenesis ; literature reviews ; molecular cloning ; Mutagenesis ; mutants ; Phenotype ; plant genetics ; point mutation ; Polymerase Chain Reaction ; reverse genetics ; transfer DNA ; transposons</subject><ispartof>The Plant journal : for cell and molecular biology, 2004-09, Vol.39 (5), p.682-696</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5369-3fa59f57f3fc7b68480e574a6ad48e6b50d5cde8961d0a4784d6ba3980ab0aae3</citedby><cites>FETCH-LOGICAL-c5369-3fa59f57f3fc7b68480e574a6ad48e6b50d5cde8961d0a4784d6ba3980ab0aae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2004.02149.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2004.02149.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15315632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostergaard, L</creatorcontrib><creatorcontrib>Yanofsky, M.F</creatorcontrib><title>Establishing gene function by mutagenesis in Arabidopsis thaliana</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies have proven efficient in addressing the first two questions as shown in a recent report (Yamada et al., 2003). However, assessing the function of every gene in every cell will require years of careful analyses of the phenotypes caused by mutations in each gene. Current progress in generating large numbers of molecular markers and near-saturation insertion mutant collections has immensely facilitated functional genomics studies in Arabidopsis. In this review, we focus on how gene function can be revealed through the analysis of mutants by either forward or reverse genetics. These mutants generally fall into two distinct classes. The first class typically includes point mutations or small deletions derived from chemical or fast neutron mutagenesis whereas the second class includes insertions of transferred-DNA or transposon elements. We describe the current methods that are used to identify the gene corresponding to these mutations, which can then be used as a probe to further dissect its function.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Base Sequence</subject><subject>DNA Transposable Elements</subject><subject>DNA, Bacterial - genetics</subject><subject>forward genetics</subject><subject>functional genomics</subject><subject>gene deletion</subject><subject>gene function</subject><subject>Genes, Plant</subject><subject>genome</subject><subject>genomics</subject><subject>insertional mutagenesis</subject><subject>literature reviews</subject><subject>molecular cloning</subject><subject>Mutagenesis</subject><subject>mutants</subject><subject>Phenotype</subject><subject>plant genetics</subject><subject>point mutation</subject><subject>Polymerase Chain Reaction</subject><subject>reverse genetics</subject><subject>transfer DNA</subject><subject>transposons</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1Lw0AQhhdRbK3-Bc3JW-Js9iPZg4dS6hcFBVvwtkySTbslTWo2wfbfm9iKV-cyX-87Aw8hHoWAdnG3DiiTwmeU7YIQgAcQUq6C3QkZ_i4-TskQlAQ_4jQckAvn1gA0YpKfkwEVjArJwiEZT12DSWHdypZLb2lK4-VtmTa2Kr1k723aBvuhs86zpTeuMbFZte3bZoWFxRIvyVmOhTNXxzwii4fpfPLkz14fnyfjmZ8KJpXPchQqF1HO8jRKZMxjMCLiKDHjsZGJgEykmYmVpBkgj2KeyQSZigETQDRsRG4Pd7d19dka1-iNdakpCixN1TpNYxAqEmEnjA_CtK6cq02ut7XdYL3XFHSPT691T0n3lHSPT__g07vOen380SYbk_0Zj7w6wf1B8GULs__3YT1_e-mrzn9z8OdYaVzW1unFewiUASghQyXZN3OEiEA</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Ostergaard, L</creator><creator>Yanofsky, M.F</creator><general>Blackwell Science Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200409</creationdate><title>Establishing gene function by mutagenesis in Arabidopsis thaliana</title><author>Ostergaard, L ; Yanofsky, M.F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5369-3fa59f57f3fc7b68480e574a6ad48e6b50d5cde8961d0a4784d6ba3980ab0aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Base Sequence</topic><topic>DNA Transposable Elements</topic><topic>DNA, Bacterial - genetics</topic><topic>forward genetics</topic><topic>functional genomics</topic><topic>gene deletion</topic><topic>gene function</topic><topic>Genes, Plant</topic><topic>genome</topic><topic>genomics</topic><topic>insertional mutagenesis</topic><topic>literature reviews</topic><topic>molecular cloning</topic><topic>Mutagenesis</topic><topic>mutants</topic><topic>Phenotype</topic><topic>plant genetics</topic><topic>point mutation</topic><topic>Polymerase Chain Reaction</topic><topic>reverse genetics</topic><topic>transfer DNA</topic><topic>transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostergaard, L</creatorcontrib><creatorcontrib>Yanofsky, M.F</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostergaard, L</au><au>Yanofsky, M.F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishing gene function by mutagenesis in Arabidopsis thaliana</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2004-09</date><risdate>2004</risdate><volume>39</volume><issue>5</issue><spage>682</spage><epage>696</epage><pages>682-696</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies have proven efficient in addressing the first two questions as shown in a recent report (Yamada et al., 2003). However, assessing the function of every gene in every cell will require years of careful analyses of the phenotypes caused by mutations in each gene. Current progress in generating large numbers of molecular markers and near-saturation insertion mutant collections has immensely facilitated functional genomics studies in Arabidopsis. In this review, we focus on how gene function can be revealed through the analysis of mutants by either forward or reverse genetics. These mutants generally fall into two distinct classes. The first class typically includes point mutations or small deletions derived from chemical or fast neutron mutagenesis whereas the second class includes insertions of transferred-DNA or transposon elements. We describe the current methods that are used to identify the gene corresponding to these mutations, which can then be used as a probe to further dissect its function.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15315632</pmid><doi>10.1111/j.1365-313x.2004.02149.x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2004-09, Vol.39 (5), p.682-696
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_18059752
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arabidopsis
Arabidopsis - genetics
Arabidopsis thaliana
Base Sequence
DNA Transposable Elements
DNA, Bacterial - genetics
forward genetics
functional genomics
gene deletion
gene function
Genes, Plant
genome
genomics
insertional mutagenesis
literature reviews
molecular cloning
Mutagenesis
mutants
Phenotype
plant genetics
point mutation
Polymerase Chain Reaction
reverse genetics
transfer DNA
transposons
title Establishing gene function by mutagenesis in Arabidopsis thaliana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishing%20gene%20function%20by%20mutagenesis%20in%20Arabidopsis%20thaliana&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Ostergaard,%20L&rft.date=2004-09&rft.volume=39&rft.issue=5&rft.spage=682&rft.epage=696&rft.pages=682-696&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313x.2004.02149.x&rft_dat=%3Cproquest_cross%3E18059752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18059752&rft_id=info:pmid/15315632&rfr_iscdi=true