Geochemistry and origin of the ophiolite hosted magnesite deposit at Derakht-Senjed, NE Iran

The Derakht-Senjed magnesite deposit, hosted by Torbat-e-Heydarieh ophiolite in NE Iran, is developed as veins, veinlets and stockwork type mineralization. While the veins and veinlets only contain magnesite, the stockwork mineralization in addition contains sparry dolomite interlayered with magnesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralogy and petrology 2015-12, Vol.109 (6), p.693-704
Hauptverfasser: Mirnejad, Hassan, Aminzadeh, Mahrokh, Ebner, Fritz, Unterweissacher, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 704
container_issue 6
container_start_page 693
container_title Mineralogy and petrology
container_volume 109
creator Mirnejad, Hassan
Aminzadeh, Mahrokh
Ebner, Fritz
Unterweissacher, Thomas
description The Derakht-Senjed magnesite deposit, hosted by Torbat-e-Heydarieh ophiolite in NE Iran, is developed as veins, veinlets and stockwork type mineralization. While the veins and veinlets only contain magnesite, the stockwork mineralization in addition contains sparry dolomite interlayered with magnesite. Magnesite and dolomite are both poor in FeO and SiO 2 . The carbon and oxygen isotope compositions of magnesite (δ 13 C V-PDB  = −3.9 ± 0.1 to −5.0 ± 0.1‰; δ 18 O V-SMOW  = +25.2 ± 0.1 to +26.5 ± 0.1 ‰) can be explained by contribution of atmospheric CO 2 and/or an involvement by organic carbon. Dolomite typically shows slightly lower values of δ 13 C V-PDB -5.2 ± 0.1 to −5.5 ± 0.1‰ and δ 18 O V-SMOW  + 23.8 ± 0.1 to +24.8 ± 0.1‰ compared to the magnesite. The formation of magnesite at Derakht-Senjed was structurally controlled by a fracture network in the ultramafic host rocks, which provided suitable fluid pathways for leaching of Mg from the host rocks and subsequent precipitation of magnesite from carbonated solutions. It is likely that dolomite formed due to precipitation from a fluid having lower XCO 2 and higher Ca 2+ /Mg 2+ activity ratio, rather than by replacement of magnesite.
doi_str_mv 10.1007/s00710-015-0408-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1805510625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800436095</sourcerecordid><originalsourceid>FETCH-LOGICAL-a475t-45df6a2b2cc6bc970172cd21c95ea86c18ee48bbf46c5a71a350e8dc69f5c3743</originalsourceid><addsrcrecordid>eNqNkUFLAzEQhYMoWKs_wFvAiwdXZ3aT3exRaq0F0YN6E0Kane1ubTc12R76702pBxEELzPDzPceDI-xc4RrBChuQiwICaBMQIBK4IANUGQqQczVIRtAmcVrAeqYnYSwAAAlFQ7Y-4ScbWjVht5vuekq7nw7bzvuat43xN26ad2y7Yk3LvRU8ZWZdxR2i4rWLg7c9PyOvPlo-uSFugVVV_xpzKfedKfsqDbLQGfffcje7sevo4fk8XkyHd0-JkYUsk-ErOrcpLPU2nxmywKwSG2Voi0lGZVbVERCzWa1yK00BZpMAqnK5mUtbVaIbMgu975r7z43FHod_7G0XJqO3CZoVCAlQp7K_6AgshzKHXrxC124je_iIxqLLBMCMcVI4Z6y3oXgqdZr366M32oEvYtG76PRMRq9i0ZD1KR7TYhsNyf_w_lP0RfGp4_R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733441121</pqid></control><display><type>article</type><title>Geochemistry and origin of the ophiolite hosted magnesite deposit at Derakht-Senjed, NE Iran</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mirnejad, Hassan ; Aminzadeh, Mahrokh ; Ebner, Fritz ; Unterweissacher, Thomas</creator><creatorcontrib>Mirnejad, Hassan ; Aminzadeh, Mahrokh ; Ebner, Fritz ; Unterweissacher, Thomas</creatorcontrib><description>The Derakht-Senjed magnesite deposit, hosted by Torbat-e-Heydarieh ophiolite in NE Iran, is developed as veins, veinlets and stockwork type mineralization. While the veins and veinlets only contain magnesite, the stockwork mineralization in addition contains sparry dolomite interlayered with magnesite. Magnesite and dolomite are both poor in FeO and SiO 2 . The carbon and oxygen isotope compositions of magnesite (δ 13 C V-PDB  = −3.9 ± 0.1 to −5.0 ± 0.1‰; δ 18 O V-SMOW  = +25.2 ± 0.1 to +26.5 ± 0.1 ‰) can be explained by contribution of atmospheric CO 2 and/or an involvement by organic carbon. Dolomite typically shows slightly lower values of δ 13 C V-PDB -5.2 ± 0.1 to −5.5 ± 0.1‰ and δ 18 O V-SMOW  + 23.8 ± 0.1 to +24.8 ± 0.1‰ compared to the magnesite. The formation of magnesite at Derakht-Senjed was structurally controlled by a fracture network in the ultramafic host rocks, which provided suitable fluid pathways for leaching of Mg from the host rocks and subsequent precipitation of magnesite from carbonated solutions. It is likely that dolomite formed due to precipitation from a fluid having lower XCO 2 and higher Ca 2+ /Mg 2+ activity ratio, rather than by replacement of magnesite.</description><identifier>ISSN: 0930-0708</identifier><identifier>EISSN: 1438-1168</identifier><identifier>DOI: 10.1007/s00710-015-0408-0</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Carbon ; Carbon dioxide ; Deposits ; Dolomite ; Earth and Environmental Science ; Earth Sciences ; Fluid dynamics ; Fluid flow ; Geochemistry ; Inorganic Chemistry ; Leaching ; Magnesite ; Magnesium ; Magnesium carbonate ; Mineralization ; Mineralogy ; Organic carbon ; Original Paper ; Oxygen isotopes ; Rocks ; Sediments ; Veins ; Veins (geology)</subject><ispartof>Mineralogy and petrology, 2015-12, Vol.109 (6), p.693-704</ispartof><rights>Springer-Verlag Wien 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a475t-45df6a2b2cc6bc970172cd21c95ea86c18ee48bbf46c5a71a350e8dc69f5c3743</citedby><cites>FETCH-LOGICAL-a475t-45df6a2b2cc6bc970172cd21c95ea86c18ee48bbf46c5a71a350e8dc69f5c3743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00710-015-0408-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00710-015-0408-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mirnejad, Hassan</creatorcontrib><creatorcontrib>Aminzadeh, Mahrokh</creatorcontrib><creatorcontrib>Ebner, Fritz</creatorcontrib><creatorcontrib>Unterweissacher, Thomas</creatorcontrib><title>Geochemistry and origin of the ophiolite hosted magnesite deposit at Derakht-Senjed, NE Iran</title><title>Mineralogy and petrology</title><addtitle>Miner Petrol</addtitle><description>The Derakht-Senjed magnesite deposit, hosted by Torbat-e-Heydarieh ophiolite in NE Iran, is developed as veins, veinlets and stockwork type mineralization. While the veins and veinlets only contain magnesite, the stockwork mineralization in addition contains sparry dolomite interlayered with magnesite. Magnesite and dolomite are both poor in FeO and SiO 2 . The carbon and oxygen isotope compositions of magnesite (δ 13 C V-PDB  = −3.9 ± 0.1 to −5.0 ± 0.1‰; δ 18 O V-SMOW  = +25.2 ± 0.1 to +26.5 ± 0.1 ‰) can be explained by contribution of atmospheric CO 2 and/or an involvement by organic carbon. Dolomite typically shows slightly lower values of δ 13 C V-PDB -5.2 ± 0.1 to −5.5 ± 0.1‰ and δ 18 O V-SMOW  + 23.8 ± 0.1 to +24.8 ± 0.1‰ compared to the magnesite. The formation of magnesite at Derakht-Senjed was structurally controlled by a fracture network in the ultramafic host rocks, which provided suitable fluid pathways for leaching of Mg from the host rocks and subsequent precipitation of magnesite from carbonated solutions. It is likely that dolomite formed due to precipitation from a fluid having lower XCO 2 and higher Ca 2+ /Mg 2+ activity ratio, rather than by replacement of magnesite.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Deposits</subject><subject>Dolomite</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Geochemistry</subject><subject>Inorganic Chemistry</subject><subject>Leaching</subject><subject>Magnesite</subject><subject>Magnesium</subject><subject>Magnesium carbonate</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Organic carbon</subject><subject>Original Paper</subject><subject>Oxygen isotopes</subject><subject>Rocks</subject><subject>Sediments</subject><subject>Veins</subject><subject>Veins (geology)</subject><issn>0930-0708</issn><issn>1438-1168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUFLAzEQhYMoWKs_wFvAiwdXZ3aT3exRaq0F0YN6E0Kane1ubTc12R76702pBxEELzPDzPceDI-xc4RrBChuQiwICaBMQIBK4IANUGQqQczVIRtAmcVrAeqYnYSwAAAlFQ7Y-4ScbWjVht5vuekq7nw7bzvuat43xN26ad2y7Yk3LvRU8ZWZdxR2i4rWLg7c9PyOvPlo-uSFugVVV_xpzKfedKfsqDbLQGfffcje7sevo4fk8XkyHd0-JkYUsk-ErOrcpLPU2nxmywKwSG2Voi0lGZVbVERCzWa1yK00BZpMAqnK5mUtbVaIbMgu975r7z43FHod_7G0XJqO3CZoVCAlQp7K_6AgshzKHXrxC124je_iIxqLLBMCMcVI4Z6y3oXgqdZr366M32oEvYtG76PRMRq9i0ZD1KR7TYhsNyf_w_lP0RfGp4_R</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Mirnejad, Hassan</creator><creator>Aminzadeh, Mahrokh</creator><creator>Ebner, Fritz</creator><creator>Unterweissacher, Thomas</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20151201</creationdate><title>Geochemistry and origin of the ophiolite hosted magnesite deposit at Derakht-Senjed, NE Iran</title><author>Mirnejad, Hassan ; Aminzadeh, Mahrokh ; Ebner, Fritz ; Unterweissacher, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a475t-45df6a2b2cc6bc970172cd21c95ea86c18ee48bbf46c5a71a350e8dc69f5c3743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Deposits</topic><topic>Dolomite</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Geochemistry</topic><topic>Inorganic Chemistry</topic><topic>Leaching</topic><topic>Magnesite</topic><topic>Magnesium</topic><topic>Magnesium carbonate</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Organic carbon</topic><topic>Original Paper</topic><topic>Oxygen isotopes</topic><topic>Rocks</topic><topic>Sediments</topic><topic>Veins</topic><topic>Veins (geology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirnejad, Hassan</creatorcontrib><creatorcontrib>Aminzadeh, Mahrokh</creatorcontrib><creatorcontrib>Ebner, Fritz</creatorcontrib><creatorcontrib>Unterweissacher, Thomas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirnejad, Hassan</au><au>Aminzadeh, Mahrokh</au><au>Ebner, Fritz</au><au>Unterweissacher, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geochemistry and origin of the ophiolite hosted magnesite deposit at Derakht-Senjed, NE Iran</atitle><jtitle>Mineralogy and petrology</jtitle><stitle>Miner Petrol</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>109</volume><issue>6</issue><spage>693</spage><epage>704</epage><pages>693-704</pages><issn>0930-0708</issn><eissn>1438-1168</eissn><abstract>The Derakht-Senjed magnesite deposit, hosted by Torbat-e-Heydarieh ophiolite in NE Iran, is developed as veins, veinlets and stockwork type mineralization. While the veins and veinlets only contain magnesite, the stockwork mineralization in addition contains sparry dolomite interlayered with magnesite. Magnesite and dolomite are both poor in FeO and SiO 2 . The carbon and oxygen isotope compositions of magnesite (δ 13 C V-PDB  = −3.9 ± 0.1 to −5.0 ± 0.1‰; δ 18 O V-SMOW  = +25.2 ± 0.1 to +26.5 ± 0.1 ‰) can be explained by contribution of atmospheric CO 2 and/or an involvement by organic carbon. Dolomite typically shows slightly lower values of δ 13 C V-PDB -5.2 ± 0.1 to −5.5 ± 0.1‰ and δ 18 O V-SMOW  + 23.8 ± 0.1 to +24.8 ± 0.1‰ compared to the magnesite. The formation of magnesite at Derakht-Senjed was structurally controlled by a fracture network in the ultramafic host rocks, which provided suitable fluid pathways for leaching of Mg from the host rocks and subsequent precipitation of magnesite from carbonated solutions. It is likely that dolomite formed due to precipitation from a fluid having lower XCO 2 and higher Ca 2+ /Mg 2+ activity ratio, rather than by replacement of magnesite.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00710-015-0408-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-0708
ispartof Mineralogy and petrology, 2015-12, Vol.109 (6), p.693-704
issn 0930-0708
1438-1168
language eng
recordid cdi_proquest_miscellaneous_1805510625
source SpringerLink Journals - AutoHoldings
subjects Carbon
Carbon dioxide
Deposits
Dolomite
Earth and Environmental Science
Earth Sciences
Fluid dynamics
Fluid flow
Geochemistry
Inorganic Chemistry
Leaching
Magnesite
Magnesium
Magnesium carbonate
Mineralization
Mineralogy
Organic carbon
Original Paper
Oxygen isotopes
Rocks
Sediments
Veins
Veins (geology)
title Geochemistry and origin of the ophiolite hosted magnesite deposit at Derakht-Senjed, NE Iran
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geochemistry%20and%20origin%20of%20the%20ophiolite%20hosted%20magnesite%20deposit%20at%20Derakht-Senjed,%20NE%20Iran&rft.jtitle=Mineralogy%20and%20petrology&rft.au=Mirnejad,%20Hassan&rft.date=2015-12-01&rft.volume=109&rft.issue=6&rft.spage=693&rft.epage=704&rft.pages=693-704&rft.issn=0930-0708&rft.eissn=1438-1168&rft_id=info:doi/10.1007/s00710-015-0408-0&rft_dat=%3Cproquest_cross%3E1800436095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733441121&rft_id=info:pmid/&rfr_iscdi=true