Geochemistry and origin of the ophiolite hosted magnesite deposit at Derakht-Senjed, NE Iran
The Derakht-Senjed magnesite deposit, hosted by Torbat-e-Heydarieh ophiolite in NE Iran, is developed as veins, veinlets and stockwork type mineralization. While the veins and veinlets only contain magnesite, the stockwork mineralization in addition contains sparry dolomite interlayered with magnesi...
Gespeichert in:
Veröffentlicht in: | Mineralogy and petrology 2015-12, Vol.109 (6), p.693-704 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 704 |
---|---|
container_issue | 6 |
container_start_page | 693 |
container_title | Mineralogy and petrology |
container_volume | 109 |
creator | Mirnejad, Hassan Aminzadeh, Mahrokh Ebner, Fritz Unterweissacher, Thomas |
description | The Derakht-Senjed magnesite deposit, hosted by Torbat-e-Heydarieh ophiolite in NE Iran, is developed as veins, veinlets and stockwork type mineralization. While the veins and veinlets only contain magnesite, the stockwork mineralization in addition contains sparry dolomite interlayered with magnesite. Magnesite and dolomite are both poor in FeO and SiO
2
. The carbon and oxygen isotope compositions of magnesite (δ
13
C
V-PDB
= −3.9 ± 0.1 to −5.0 ± 0.1‰; δ
18
O
V-SMOW
= +25.2 ± 0.1 to +26.5 ± 0.1 ‰) can be explained by contribution of atmospheric CO
2
and/or an involvement by organic carbon. Dolomite typically shows slightly lower values of δ
13
C
V-PDB
-5.2 ± 0.1 to −5.5 ± 0.1‰ and δ
18
O
V-SMOW
+ 23.8 ± 0.1 to +24.8 ± 0.1‰ compared to the magnesite. The formation of magnesite at Derakht-Senjed was structurally controlled by a fracture network in the ultramafic host rocks, which provided suitable fluid pathways for leaching of Mg from the host rocks and subsequent precipitation of magnesite from carbonated solutions. It is likely that dolomite formed due to precipitation from a fluid having lower XCO
2
and higher Ca
2+
/Mg
2+
activity ratio, rather than by replacement of magnesite. |
doi_str_mv | 10.1007/s00710-015-0408-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1805510625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800436095</sourcerecordid><originalsourceid>FETCH-LOGICAL-a475t-45df6a2b2cc6bc970172cd21c95ea86c18ee48bbf46c5a71a350e8dc69f5c3743</originalsourceid><addsrcrecordid>eNqNkUFLAzEQhYMoWKs_wFvAiwdXZ3aT3exRaq0F0YN6E0Kane1ubTc12R76702pBxEELzPDzPceDI-xc4RrBChuQiwICaBMQIBK4IANUGQqQczVIRtAmcVrAeqYnYSwAAAlFQ7Y-4ScbWjVht5vuekq7nw7bzvuat43xN26ad2y7Yk3LvRU8ZWZdxR2i4rWLg7c9PyOvPlo-uSFugVVV_xpzKfedKfsqDbLQGfffcje7sevo4fk8XkyHd0-JkYUsk-ErOrcpLPU2nxmywKwSG2Voi0lGZVbVERCzWa1yK00BZpMAqnK5mUtbVaIbMgu975r7z43FHod_7G0XJqO3CZoVCAlQp7K_6AgshzKHXrxC124je_iIxqLLBMCMcVI4Z6y3oXgqdZr366M32oEvYtG76PRMRq9i0ZD1KR7TYhsNyf_w_lP0RfGp4_R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733441121</pqid></control><display><type>article</type><title>Geochemistry and origin of the ophiolite hosted magnesite deposit at Derakht-Senjed, NE Iran</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mirnejad, Hassan ; Aminzadeh, Mahrokh ; Ebner, Fritz ; Unterweissacher, Thomas</creator><creatorcontrib>Mirnejad, Hassan ; Aminzadeh, Mahrokh ; Ebner, Fritz ; Unterweissacher, Thomas</creatorcontrib><description>The Derakht-Senjed magnesite deposit, hosted by Torbat-e-Heydarieh ophiolite in NE Iran, is developed as veins, veinlets and stockwork type mineralization. While the veins and veinlets only contain magnesite, the stockwork mineralization in addition contains sparry dolomite interlayered with magnesite. Magnesite and dolomite are both poor in FeO and SiO
2
. The carbon and oxygen isotope compositions of magnesite (δ
13
C
V-PDB
= −3.9 ± 0.1 to −5.0 ± 0.1‰; δ
18
O
V-SMOW
= +25.2 ± 0.1 to +26.5 ± 0.1 ‰) can be explained by contribution of atmospheric CO
2
and/or an involvement by organic carbon. Dolomite typically shows slightly lower values of δ
13
C
V-PDB
-5.2 ± 0.1 to −5.5 ± 0.1‰ and δ
18
O
V-SMOW
+ 23.8 ± 0.1 to +24.8 ± 0.1‰ compared to the magnesite. The formation of magnesite at Derakht-Senjed was structurally controlled by a fracture network in the ultramafic host rocks, which provided suitable fluid pathways for leaching of Mg from the host rocks and subsequent precipitation of magnesite from carbonated solutions. It is likely that dolomite formed due to precipitation from a fluid having lower XCO
2
and higher Ca
2+
/Mg
2+
activity ratio, rather than by replacement of magnesite.</description><identifier>ISSN: 0930-0708</identifier><identifier>EISSN: 1438-1168</identifier><identifier>DOI: 10.1007/s00710-015-0408-0</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Carbon ; Carbon dioxide ; Deposits ; Dolomite ; Earth and Environmental Science ; Earth Sciences ; Fluid dynamics ; Fluid flow ; Geochemistry ; Inorganic Chemistry ; Leaching ; Magnesite ; Magnesium ; Magnesium carbonate ; Mineralization ; Mineralogy ; Organic carbon ; Original Paper ; Oxygen isotopes ; Rocks ; Sediments ; Veins ; Veins (geology)</subject><ispartof>Mineralogy and petrology, 2015-12, Vol.109 (6), p.693-704</ispartof><rights>Springer-Verlag Wien 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a475t-45df6a2b2cc6bc970172cd21c95ea86c18ee48bbf46c5a71a350e8dc69f5c3743</citedby><cites>FETCH-LOGICAL-a475t-45df6a2b2cc6bc970172cd21c95ea86c18ee48bbf46c5a71a350e8dc69f5c3743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00710-015-0408-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00710-015-0408-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mirnejad, Hassan</creatorcontrib><creatorcontrib>Aminzadeh, Mahrokh</creatorcontrib><creatorcontrib>Ebner, Fritz</creatorcontrib><creatorcontrib>Unterweissacher, Thomas</creatorcontrib><title>Geochemistry and origin of the ophiolite hosted magnesite deposit at Derakht-Senjed, NE Iran</title><title>Mineralogy and petrology</title><addtitle>Miner Petrol</addtitle><description>The Derakht-Senjed magnesite deposit, hosted by Torbat-e-Heydarieh ophiolite in NE Iran, is developed as veins, veinlets and stockwork type mineralization. While the veins and veinlets only contain magnesite, the stockwork mineralization in addition contains sparry dolomite interlayered with magnesite. Magnesite and dolomite are both poor in FeO and SiO
2
. The carbon and oxygen isotope compositions of magnesite (δ
13
C
V-PDB
= −3.9 ± 0.1 to −5.0 ± 0.1‰; δ
18
O
V-SMOW
= +25.2 ± 0.1 to +26.5 ± 0.1 ‰) can be explained by contribution of atmospheric CO
2
and/or an involvement by organic carbon. Dolomite typically shows slightly lower values of δ
13
C
V-PDB
-5.2 ± 0.1 to −5.5 ± 0.1‰ and δ
18
O
V-SMOW
+ 23.8 ± 0.1 to +24.8 ± 0.1‰ compared to the magnesite. The formation of magnesite at Derakht-Senjed was structurally controlled by a fracture network in the ultramafic host rocks, which provided suitable fluid pathways for leaching of Mg from the host rocks and subsequent precipitation of magnesite from carbonated solutions. It is likely that dolomite formed due to precipitation from a fluid having lower XCO
2
and higher Ca
2+
/Mg
2+
activity ratio, rather than by replacement of magnesite.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Deposits</subject><subject>Dolomite</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Geochemistry</subject><subject>Inorganic Chemistry</subject><subject>Leaching</subject><subject>Magnesite</subject><subject>Magnesium</subject><subject>Magnesium carbonate</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Organic carbon</subject><subject>Original Paper</subject><subject>Oxygen isotopes</subject><subject>Rocks</subject><subject>Sediments</subject><subject>Veins</subject><subject>Veins (geology)</subject><issn>0930-0708</issn><issn>1438-1168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUFLAzEQhYMoWKs_wFvAiwdXZ3aT3exRaq0F0YN6E0Kane1ubTc12R76702pBxEELzPDzPceDI-xc4RrBChuQiwICaBMQIBK4IANUGQqQczVIRtAmcVrAeqYnYSwAAAlFQ7Y-4ScbWjVht5vuekq7nw7bzvuat43xN26ad2y7Yk3LvRU8ZWZdxR2i4rWLg7c9PyOvPlo-uSFugVVV_xpzKfedKfsqDbLQGfffcje7sevo4fk8XkyHd0-JkYUsk-ErOrcpLPU2nxmywKwSG2Voi0lGZVbVERCzWa1yK00BZpMAqnK5mUtbVaIbMgu975r7z43FHod_7G0XJqO3CZoVCAlQp7K_6AgshzKHXrxC124je_iIxqLLBMCMcVI4Z6y3oXgqdZr366M32oEvYtG76PRMRq9i0ZD1KR7TYhsNyf_w_lP0RfGp4_R</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Mirnejad, Hassan</creator><creator>Aminzadeh, Mahrokh</creator><creator>Ebner, Fritz</creator><creator>Unterweissacher, Thomas</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20151201</creationdate><title>Geochemistry and origin of the ophiolite hosted magnesite deposit at Derakht-Senjed, NE Iran</title><author>Mirnejad, Hassan ; Aminzadeh, Mahrokh ; Ebner, Fritz ; Unterweissacher, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a475t-45df6a2b2cc6bc970172cd21c95ea86c18ee48bbf46c5a71a350e8dc69f5c3743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Deposits</topic><topic>Dolomite</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Geochemistry</topic><topic>Inorganic Chemistry</topic><topic>Leaching</topic><topic>Magnesite</topic><topic>Magnesium</topic><topic>Magnesium carbonate</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Organic carbon</topic><topic>Original Paper</topic><topic>Oxygen isotopes</topic><topic>Rocks</topic><topic>Sediments</topic><topic>Veins</topic><topic>Veins (geology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirnejad, Hassan</creatorcontrib><creatorcontrib>Aminzadeh, Mahrokh</creatorcontrib><creatorcontrib>Ebner, Fritz</creatorcontrib><creatorcontrib>Unterweissacher, Thomas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirnejad, Hassan</au><au>Aminzadeh, Mahrokh</au><au>Ebner, Fritz</au><au>Unterweissacher, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geochemistry and origin of the ophiolite hosted magnesite deposit at Derakht-Senjed, NE Iran</atitle><jtitle>Mineralogy and petrology</jtitle><stitle>Miner Petrol</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>109</volume><issue>6</issue><spage>693</spage><epage>704</epage><pages>693-704</pages><issn>0930-0708</issn><eissn>1438-1168</eissn><abstract>The Derakht-Senjed magnesite deposit, hosted by Torbat-e-Heydarieh ophiolite in NE Iran, is developed as veins, veinlets and stockwork type mineralization. While the veins and veinlets only contain magnesite, the stockwork mineralization in addition contains sparry dolomite interlayered with magnesite. Magnesite and dolomite are both poor in FeO and SiO
2
. The carbon and oxygen isotope compositions of magnesite (δ
13
C
V-PDB
= −3.9 ± 0.1 to −5.0 ± 0.1‰; δ
18
O
V-SMOW
= +25.2 ± 0.1 to +26.5 ± 0.1 ‰) can be explained by contribution of atmospheric CO
2
and/or an involvement by organic carbon. Dolomite typically shows slightly lower values of δ
13
C
V-PDB
-5.2 ± 0.1 to −5.5 ± 0.1‰ and δ
18
O
V-SMOW
+ 23.8 ± 0.1 to +24.8 ± 0.1‰ compared to the magnesite. The formation of magnesite at Derakht-Senjed was structurally controlled by a fracture network in the ultramafic host rocks, which provided suitable fluid pathways for leaching of Mg from the host rocks and subsequent precipitation of magnesite from carbonated solutions. It is likely that dolomite formed due to precipitation from a fluid having lower XCO
2
and higher Ca
2+
/Mg
2+
activity ratio, rather than by replacement of magnesite.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00710-015-0408-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-0708 |
ispartof | Mineralogy and petrology, 2015-12, Vol.109 (6), p.693-704 |
issn | 0930-0708 1438-1168 |
language | eng |
recordid | cdi_proquest_miscellaneous_1805510625 |
source | SpringerLink Journals - AutoHoldings |
subjects | Carbon Carbon dioxide Deposits Dolomite Earth and Environmental Science Earth Sciences Fluid dynamics Fluid flow Geochemistry Inorganic Chemistry Leaching Magnesite Magnesium Magnesium carbonate Mineralization Mineralogy Organic carbon Original Paper Oxygen isotopes Rocks Sediments Veins Veins (geology) |
title | Geochemistry and origin of the ophiolite hosted magnesite deposit at Derakht-Senjed, NE Iran |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geochemistry%20and%20origin%20of%20the%20ophiolite%20hosted%20magnesite%20deposit%20at%20Derakht-Senjed,%20NE%20Iran&rft.jtitle=Mineralogy%20and%20petrology&rft.au=Mirnejad,%20Hassan&rft.date=2015-12-01&rft.volume=109&rft.issue=6&rft.spage=693&rft.epage=704&rft.pages=693-704&rft.issn=0930-0708&rft.eissn=1438-1168&rft_id=info:doi/10.1007/s00710-015-0408-0&rft_dat=%3Cproquest_cross%3E1800436095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733441121&rft_id=info:pmid/&rfr_iscdi=true |