Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility
A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure–property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation lgSw=kT+c, where Sw is t...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2016-08, Vol.37 (22), p.2045-2051 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2051 |
---|---|
container_issue | 22 |
container_start_page | 2045 |
container_title | Journal of computational chemistry |
container_volume | 37 |
creator | Klimenko, Kyrylo Kuz'min, Victor Ognichenko, Liudmila Gorb, Leonid Shukla, Manoj Vinas, Natalia Perkins, Edward Polishchuk, Pavel Artemenko, Anatoly Leszczynski, Jerzy |
description | A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure–property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation
lgSw=kT+c, where Sw is the value of solubility and T is the value of temperature. The second step uses Random Forest technique to create high‐efficiency QSPR model. The performance of the model is assessed using cross‐validation and external test set prediction. Predictive capacity of developed model is compared with COSMO‐RS approximation, which has quantum chemical and thermodynamic foundations. The comparison shows slightly better prediction ability for the QSPR model presented in this publication. © 2016 Wiley Periodicals, Inc.
Solubility in water is one of the key physico‐chemical properties which can vary due to temperature change. Since experimental determination of solubility can be difficult, expensive, and time‐consuming, QSPR modeling was used for organic compounds aqueous solubility prediction in temperature range 4–97°C. The feature net technique allows for the determination of the solubility parameter k from linear regression equation for better model performance. Models have acceptable predictive capability comparable to COSMO‐RS quantum chemical calculations. |
doi_str_mv | 10.1002/jcc.24424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1804862279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1804862279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3914-96771411cbaa0b4df3720c372a1164ad5d9833d23382515ce826e1538a1c70053</originalsourceid><addsrcrecordid>eNp10E9PFDEYBvCGaGBBDn4BMokXPQz0f6fczEZRQlAUIrem274bZulMx3YG3W9v1wUOJl7ay-998uRB6DXBxwRjerJy7phyTvkOmhGsZa0bdfsCzTDRtG6kIHtoP-cVxpgJyXfRHlWMNUTIGbq9jA8QKujvbO_AV3YYQuvs2MY-V3FZXX3_-q3qooeQT6tr6AZIdpwSVB4G6D2Uow2zPyeIU65yDNOiDe24foVeLm3IcPj4H6Cbjx-u55_qiy9nn-fvL2rHNOG1lkoRTohbWIsX3C-ZotiVxxIiufXC64YxT0tfKohw0FAJRLDGEqcwFuwAvd3mDimWEnk0XZsdhGD7TSNDGswbSanShb75h67ilPrSbqOUwpxrWdS7rXIp5pxgaYbUdjatDcFmM7cpc5u_cxd79Jg4LTrwz_Jp3wJOtuBXG2D9_yRzPp8_RdbbizaP8Pv5wqZ7IxVTwvy4PDNYX1EpuDTn7A-OHpYa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807704496</pqid></control><display><type>article</type><title>Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility</title><source>Access via Wiley Online Library</source><creator>Klimenko, Kyrylo ; Kuz'min, Victor ; Ognichenko, Liudmila ; Gorb, Leonid ; Shukla, Manoj ; Vinas, Natalia ; Perkins, Edward ; Polishchuk, Pavel ; Artemenko, Anatoly ; Leszczynski, Jerzy</creator><creatorcontrib>Klimenko, Kyrylo ; Kuz'min, Victor ; Ognichenko, Liudmila ; Gorb, Leonid ; Shukla, Manoj ; Vinas, Natalia ; Perkins, Edward ; Polishchuk, Pavel ; Artemenko, Anatoly ; Leszczynski, Jerzy</creatorcontrib><description>A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure–property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation
lgSw=kT+c, where Sw is the value of solubility and T is the value of temperature. The second step uses Random Forest technique to create high‐efficiency QSPR model. The performance of the model is assessed using cross‐validation and external test set prediction. Predictive capacity of developed model is compared with COSMO‐RS approximation, which has quantum chemical and thermodynamic foundations. The comparison shows slightly better prediction ability for the QSPR model presented in this publication. © 2016 Wiley Periodicals, Inc.
Solubility in water is one of the key physico‐chemical properties which can vary due to temperature change. Since experimental determination of solubility can be difficult, expensive, and time‐consuming, QSPR modeling was used for organic compounds aqueous solubility prediction in temperature range 4–97°C. The feature net technique allows for the determination of the solubility parameter k from linear regression equation for better model performance. Models have acceptable predictive capability comparable to COSMO‐RS quantum chemical calculations.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.24424</identifier><identifier>PMID: 27338156</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Approximation ; Aqueous chemistry ; aqueous solubility ; Comparative analysis ; feature net ; QSPR ; temperature-dependent ; Thermodynamics</subject><ispartof>Journal of computational chemistry, 2016-08, Vol.37 (22), p.2045-2051</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Aug 15, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3914-96771411cbaa0b4df3720c372a1164ad5d9833d23382515ce826e1538a1c70053</citedby><cites>FETCH-LOGICAL-c3914-96771411cbaa0b4df3720c372a1164ad5d9833d23382515ce826e1538a1c70053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.24424$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.24424$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27338156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klimenko, Kyrylo</creatorcontrib><creatorcontrib>Kuz'min, Victor</creatorcontrib><creatorcontrib>Ognichenko, Liudmila</creatorcontrib><creatorcontrib>Gorb, Leonid</creatorcontrib><creatorcontrib>Shukla, Manoj</creatorcontrib><creatorcontrib>Vinas, Natalia</creatorcontrib><creatorcontrib>Perkins, Edward</creatorcontrib><creatorcontrib>Polishchuk, Pavel</creatorcontrib><creatorcontrib>Artemenko, Anatoly</creatorcontrib><creatorcontrib>Leszczynski, Jerzy</creatorcontrib><title>Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure–property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation
lgSw=kT+c, where Sw is the value of solubility and T is the value of temperature. The second step uses Random Forest technique to create high‐efficiency QSPR model. The performance of the model is assessed using cross‐validation and external test set prediction. Predictive capacity of developed model is compared with COSMO‐RS approximation, which has quantum chemical and thermodynamic foundations. The comparison shows slightly better prediction ability for the QSPR model presented in this publication. © 2016 Wiley Periodicals, Inc.
Solubility in water is one of the key physico‐chemical properties which can vary due to temperature change. Since experimental determination of solubility can be difficult, expensive, and time‐consuming, QSPR modeling was used for organic compounds aqueous solubility prediction in temperature range 4–97°C. The feature net technique allows for the determination of the solubility parameter k from linear regression equation for better model performance. Models have acceptable predictive capability comparable to COSMO‐RS quantum chemical calculations.</description><subject>Approximation</subject><subject>Aqueous chemistry</subject><subject>aqueous solubility</subject><subject>Comparative analysis</subject><subject>feature net</subject><subject>QSPR</subject><subject>temperature-dependent</subject><subject>Thermodynamics</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10E9PFDEYBvCGaGBBDn4BMokXPQz0f6fczEZRQlAUIrem274bZulMx3YG3W9v1wUOJl7ay-998uRB6DXBxwRjerJy7phyTvkOmhGsZa0bdfsCzTDRtG6kIHtoP-cVxpgJyXfRHlWMNUTIGbq9jA8QKujvbO_AV3YYQuvs2MY-V3FZXX3_-q3qooeQT6tr6AZIdpwSVB4G6D2Uow2zPyeIU65yDNOiDe24foVeLm3IcPj4H6Cbjx-u55_qiy9nn-fvL2rHNOG1lkoRTohbWIsX3C-ZotiVxxIiufXC64YxT0tfKohw0FAJRLDGEqcwFuwAvd3mDimWEnk0XZsdhGD7TSNDGswbSanShb75h67ilPrSbqOUwpxrWdS7rXIp5pxgaYbUdjatDcFmM7cpc5u_cxd79Jg4LTrwz_Jp3wJOtuBXG2D9_yRzPp8_RdbbizaP8Pv5wqZ7IxVTwvy4PDNYX1EpuDTn7A-OHpYa</recordid><startdate>20160815</startdate><enddate>20160815</enddate><creator>Klimenko, Kyrylo</creator><creator>Kuz'min, Victor</creator><creator>Ognichenko, Liudmila</creator><creator>Gorb, Leonid</creator><creator>Shukla, Manoj</creator><creator>Vinas, Natalia</creator><creator>Perkins, Edward</creator><creator>Polishchuk, Pavel</creator><creator>Artemenko, Anatoly</creator><creator>Leszczynski, Jerzy</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>20160815</creationdate><title>Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility</title><author>Klimenko, Kyrylo ; Kuz'min, Victor ; Ognichenko, Liudmila ; Gorb, Leonid ; Shukla, Manoj ; Vinas, Natalia ; Perkins, Edward ; Polishchuk, Pavel ; Artemenko, Anatoly ; Leszczynski, Jerzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3914-96771411cbaa0b4df3720c372a1164ad5d9833d23382515ce826e1538a1c70053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Aqueous chemistry</topic><topic>aqueous solubility</topic><topic>Comparative analysis</topic><topic>feature net</topic><topic>QSPR</topic><topic>temperature-dependent</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klimenko, Kyrylo</creatorcontrib><creatorcontrib>Kuz'min, Victor</creatorcontrib><creatorcontrib>Ognichenko, Liudmila</creatorcontrib><creatorcontrib>Gorb, Leonid</creatorcontrib><creatorcontrib>Shukla, Manoj</creatorcontrib><creatorcontrib>Vinas, Natalia</creatorcontrib><creatorcontrib>Perkins, Edward</creatorcontrib><creatorcontrib>Polishchuk, Pavel</creatorcontrib><creatorcontrib>Artemenko, Anatoly</creatorcontrib><creatorcontrib>Leszczynski, Jerzy</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klimenko, Kyrylo</au><au>Kuz'min, Victor</au><au>Ognichenko, Liudmila</au><au>Gorb, Leonid</au><au>Shukla, Manoj</au><au>Vinas, Natalia</au><au>Perkins, Edward</au><au>Polishchuk, Pavel</au><au>Artemenko, Anatoly</au><au>Leszczynski, Jerzy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2016-08-15</date><risdate>2016</risdate><volume>37</volume><issue>22</issue><spage>2045</spage><epage>2051</epage><pages>2045-2051</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure–property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation
lgSw=kT+c, where Sw is the value of solubility and T is the value of temperature. The second step uses Random Forest technique to create high‐efficiency QSPR model. The performance of the model is assessed using cross‐validation and external test set prediction. Predictive capacity of developed model is compared with COSMO‐RS approximation, which has quantum chemical and thermodynamic foundations. The comparison shows slightly better prediction ability for the QSPR model presented in this publication. © 2016 Wiley Periodicals, Inc.
Solubility in water is one of the key physico‐chemical properties which can vary due to temperature change. Since experimental determination of solubility can be difficult, expensive, and time‐consuming, QSPR modeling was used for organic compounds aqueous solubility prediction in temperature range 4–97°C. The feature net technique allows for the determination of the solubility parameter k from linear regression equation for better model performance. Models have acceptable predictive capability comparable to COSMO‐RS quantum chemical calculations.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>27338156</pmid><doi>10.1002/jcc.24424</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2016-08, Vol.37 (22), p.2045-2051 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_proquest_miscellaneous_1804862279 |
source | Access via Wiley Online Library |
subjects | Approximation Aqueous chemistry aqueous solubility Comparative analysis feature net QSPR temperature-dependent Thermodynamics |
title | Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20enhanced%20applications%20of%20QSPR%20models:%20Temperature%20dependence%20of%20aqueous%20solubility&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Klimenko,%20Kyrylo&rft.date=2016-08-15&rft.volume=37&rft.issue=22&rft.spage=2045&rft.epage=2051&rft.pages=2045-2051&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.24424&rft_dat=%3Cproquest_cross%3E1804862279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807704496&rft_id=info:pmid/27338156&rfr_iscdi=true |