Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility

A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure–property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation lgSw=kT+c, where Sw is t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2016-08, Vol.37 (22), p.2045-2051
Hauptverfasser: Klimenko, Kyrylo, Kuz'min, Victor, Ognichenko, Liudmila, Gorb, Leonid, Shukla, Manoj, Vinas, Natalia, Perkins, Edward, Polishchuk, Pavel, Artemenko, Anatoly, Leszczynski, Jerzy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2051
container_issue 22
container_start_page 2045
container_title Journal of computational chemistry
container_volume 37
creator Klimenko, Kyrylo
Kuz'min, Victor
Ognichenko, Liudmila
Gorb, Leonid
Shukla, Manoj
Vinas, Natalia
Perkins, Edward
Polishchuk, Pavel
Artemenko, Anatoly
Leszczynski, Jerzy
description A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure–property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation lgSw=kT+c, where Sw is the value of solubility and T is the value of temperature. The second step uses Random Forest technique to create high‐efficiency QSPR model. The performance of the model is assessed using cross‐validation and external test set prediction. Predictive capacity of developed model is compared with COSMO‐RS approximation, which has quantum chemical and thermodynamic foundations. The comparison shows slightly better prediction ability for the QSPR model presented in this publication. © 2016 Wiley Periodicals, Inc. Solubility in water is one of the key physico‐chemical properties which can vary due to temperature change. Since experimental determination of solubility can be difficult, expensive, and time‐consuming, QSPR modeling was used for organic compounds aqueous solubility prediction in temperature range 4–97°C. The feature net technique allows for the determination of the solubility parameter k from linear regression equation for better model performance. Models have acceptable predictive capability comparable to COSMO‐RS quantum chemical calculations.
doi_str_mv 10.1002/jcc.24424
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1804862279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1804862279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3914-96771411cbaa0b4df3720c372a1164ad5d9833d23382515ce826e1538a1c70053</originalsourceid><addsrcrecordid>eNp10E9PFDEYBvCGaGBBDn4BMokXPQz0f6fczEZRQlAUIrem274bZulMx3YG3W9v1wUOJl7ay-998uRB6DXBxwRjerJy7phyTvkOmhGsZa0bdfsCzTDRtG6kIHtoP-cVxpgJyXfRHlWMNUTIGbq9jA8QKujvbO_AV3YYQuvs2MY-V3FZXX3_-q3qooeQT6tr6AZIdpwSVB4G6D2Uow2zPyeIU65yDNOiDe24foVeLm3IcPj4H6Cbjx-u55_qiy9nn-fvL2rHNOG1lkoRTohbWIsX3C-ZotiVxxIiufXC64YxT0tfKohw0FAJRLDGEqcwFuwAvd3mDimWEnk0XZsdhGD7TSNDGswbSanShb75h67ilPrSbqOUwpxrWdS7rXIp5pxgaYbUdjatDcFmM7cpc5u_cxd79Jg4LTrwz_Jp3wJOtuBXG2D9_yRzPp8_RdbbizaP8Pv5wqZ7IxVTwvy4PDNYX1EpuDTn7A-OHpYa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807704496</pqid></control><display><type>article</type><title>Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility</title><source>Access via Wiley Online Library</source><creator>Klimenko, Kyrylo ; Kuz'min, Victor ; Ognichenko, Liudmila ; Gorb, Leonid ; Shukla, Manoj ; Vinas, Natalia ; Perkins, Edward ; Polishchuk, Pavel ; Artemenko, Anatoly ; Leszczynski, Jerzy</creator><creatorcontrib>Klimenko, Kyrylo ; Kuz'min, Victor ; Ognichenko, Liudmila ; Gorb, Leonid ; Shukla, Manoj ; Vinas, Natalia ; Perkins, Edward ; Polishchuk, Pavel ; Artemenko, Anatoly ; Leszczynski, Jerzy</creatorcontrib><description>A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure–property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation lgSw=kT+c, where Sw is the value of solubility and T is the value of temperature. The second step uses Random Forest technique to create high‐efficiency QSPR model. The performance of the model is assessed using cross‐validation and external test set prediction. Predictive capacity of developed model is compared with COSMO‐RS approximation, which has quantum chemical and thermodynamic foundations. The comparison shows slightly better prediction ability for the QSPR model presented in this publication. © 2016 Wiley Periodicals, Inc. Solubility in water is one of the key physico‐chemical properties which can vary due to temperature change. Since experimental determination of solubility can be difficult, expensive, and time‐consuming, QSPR modeling was used for organic compounds aqueous solubility prediction in temperature range 4–97°C. The feature net technique allows for the determination of the solubility parameter k from linear regression equation for better model performance. Models have acceptable predictive capability comparable to COSMO‐RS quantum chemical calculations.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.24424</identifier><identifier>PMID: 27338156</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Approximation ; Aqueous chemistry ; aqueous solubility ; Comparative analysis ; feature net ; QSPR ; temperature-dependent ; Thermodynamics</subject><ispartof>Journal of computational chemistry, 2016-08, Vol.37 (22), p.2045-2051</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Aug 15, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3914-96771411cbaa0b4df3720c372a1164ad5d9833d23382515ce826e1538a1c70053</citedby><cites>FETCH-LOGICAL-c3914-96771411cbaa0b4df3720c372a1164ad5d9833d23382515ce826e1538a1c70053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.24424$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.24424$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27338156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klimenko, Kyrylo</creatorcontrib><creatorcontrib>Kuz'min, Victor</creatorcontrib><creatorcontrib>Ognichenko, Liudmila</creatorcontrib><creatorcontrib>Gorb, Leonid</creatorcontrib><creatorcontrib>Shukla, Manoj</creatorcontrib><creatorcontrib>Vinas, Natalia</creatorcontrib><creatorcontrib>Perkins, Edward</creatorcontrib><creatorcontrib>Polishchuk, Pavel</creatorcontrib><creatorcontrib>Artemenko, Anatoly</creatorcontrib><creatorcontrib>Leszczynski, Jerzy</creatorcontrib><title>Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure–property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation lgSw=kT+c, where Sw is the value of solubility and T is the value of temperature. The second step uses Random Forest technique to create high‐efficiency QSPR model. The performance of the model is assessed using cross‐validation and external test set prediction. Predictive capacity of developed model is compared with COSMO‐RS approximation, which has quantum chemical and thermodynamic foundations. The comparison shows slightly better prediction ability for the QSPR model presented in this publication. © 2016 Wiley Periodicals, Inc. Solubility in water is one of the key physico‐chemical properties which can vary due to temperature change. Since experimental determination of solubility can be difficult, expensive, and time‐consuming, QSPR modeling was used for organic compounds aqueous solubility prediction in temperature range 4–97°C. The feature net technique allows for the determination of the solubility parameter k from linear regression equation for better model performance. Models have acceptable predictive capability comparable to COSMO‐RS quantum chemical calculations.</description><subject>Approximation</subject><subject>Aqueous chemistry</subject><subject>aqueous solubility</subject><subject>Comparative analysis</subject><subject>feature net</subject><subject>QSPR</subject><subject>temperature-dependent</subject><subject>Thermodynamics</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10E9PFDEYBvCGaGBBDn4BMokXPQz0f6fczEZRQlAUIrem274bZulMx3YG3W9v1wUOJl7ay-998uRB6DXBxwRjerJy7phyTvkOmhGsZa0bdfsCzTDRtG6kIHtoP-cVxpgJyXfRHlWMNUTIGbq9jA8QKujvbO_AV3YYQuvs2MY-V3FZXX3_-q3qooeQT6tr6AZIdpwSVB4G6D2Uow2zPyeIU65yDNOiDe24foVeLm3IcPj4H6Cbjx-u55_qiy9nn-fvL2rHNOG1lkoRTohbWIsX3C-ZotiVxxIiufXC64YxT0tfKohw0FAJRLDGEqcwFuwAvd3mDimWEnk0XZsdhGD7TSNDGswbSanShb75h67ilPrSbqOUwpxrWdS7rXIp5pxgaYbUdjatDcFmM7cpc5u_cxd79Jg4LTrwz_Jp3wJOtuBXG2D9_yRzPp8_RdbbizaP8Pv5wqZ7IxVTwvy4PDNYX1EpuDTn7A-OHpYa</recordid><startdate>20160815</startdate><enddate>20160815</enddate><creator>Klimenko, Kyrylo</creator><creator>Kuz'min, Victor</creator><creator>Ognichenko, Liudmila</creator><creator>Gorb, Leonid</creator><creator>Shukla, Manoj</creator><creator>Vinas, Natalia</creator><creator>Perkins, Edward</creator><creator>Polishchuk, Pavel</creator><creator>Artemenko, Anatoly</creator><creator>Leszczynski, Jerzy</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>20160815</creationdate><title>Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility</title><author>Klimenko, Kyrylo ; Kuz'min, Victor ; Ognichenko, Liudmila ; Gorb, Leonid ; Shukla, Manoj ; Vinas, Natalia ; Perkins, Edward ; Polishchuk, Pavel ; Artemenko, Anatoly ; Leszczynski, Jerzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3914-96771411cbaa0b4df3720c372a1164ad5d9833d23382515ce826e1538a1c70053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Aqueous chemistry</topic><topic>aqueous solubility</topic><topic>Comparative analysis</topic><topic>feature net</topic><topic>QSPR</topic><topic>temperature-dependent</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klimenko, Kyrylo</creatorcontrib><creatorcontrib>Kuz'min, Victor</creatorcontrib><creatorcontrib>Ognichenko, Liudmila</creatorcontrib><creatorcontrib>Gorb, Leonid</creatorcontrib><creatorcontrib>Shukla, Manoj</creatorcontrib><creatorcontrib>Vinas, Natalia</creatorcontrib><creatorcontrib>Perkins, Edward</creatorcontrib><creatorcontrib>Polishchuk, Pavel</creatorcontrib><creatorcontrib>Artemenko, Anatoly</creatorcontrib><creatorcontrib>Leszczynski, Jerzy</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klimenko, Kyrylo</au><au>Kuz'min, Victor</au><au>Ognichenko, Liudmila</au><au>Gorb, Leonid</au><au>Shukla, Manoj</au><au>Vinas, Natalia</au><au>Perkins, Edward</au><au>Polishchuk, Pavel</au><au>Artemenko, Anatoly</au><au>Leszczynski, Jerzy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2016-08-15</date><risdate>2016</risdate><volume>37</volume><issue>22</issue><spage>2045</spage><epage>2051</epage><pages>2045-2051</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure–property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation lgSw=kT+c, where Sw is the value of solubility and T is the value of temperature. The second step uses Random Forest technique to create high‐efficiency QSPR model. The performance of the model is assessed using cross‐validation and external test set prediction. Predictive capacity of developed model is compared with COSMO‐RS approximation, which has quantum chemical and thermodynamic foundations. The comparison shows slightly better prediction ability for the QSPR model presented in this publication. © 2016 Wiley Periodicals, Inc. Solubility in water is one of the key physico‐chemical properties which can vary due to temperature change. Since experimental determination of solubility can be difficult, expensive, and time‐consuming, QSPR modeling was used for organic compounds aqueous solubility prediction in temperature range 4–97°C. The feature net technique allows for the determination of the solubility parameter k from linear regression equation for better model performance. Models have acceptable predictive capability comparable to COSMO‐RS quantum chemical calculations.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>27338156</pmid><doi>10.1002/jcc.24424</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2016-08, Vol.37 (22), p.2045-2051
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_1804862279
source Access via Wiley Online Library
subjects Approximation
Aqueous chemistry
aqueous solubility
Comparative analysis
feature net
QSPR
temperature-dependent
Thermodynamics
title Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20enhanced%20applications%20of%20QSPR%20models:%20Temperature%20dependence%20of%20aqueous%20solubility&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Klimenko,%20Kyrylo&rft.date=2016-08-15&rft.volume=37&rft.issue=22&rft.spage=2045&rft.epage=2051&rft.pages=2045-2051&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.24424&rft_dat=%3Cproquest_cross%3E1804862279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807704496&rft_id=info:pmid/27338156&rfr_iscdi=true