Stoichiometry of microbial continuous-flow purification of toluene-contaminated air

The applicability of a recently published modification of the chemostat, named "titrostat", for microbial continuous-flow purification of toluene-contaminated air is discussed. This article describes the operative range and the toluene elimination efficiency of a 2-l titrostat running with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2004-08, Vol.65 (2), p.228-234
Hauptverfasser: MUTAFOV, S, ANGELOVA, B, SCHMAUDER, H.-P, AVRAMOVA, T, BOYADJIEVA, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 2
container_start_page 228
container_title Applied microbiology and biotechnology
container_volume 65
creator MUTAFOV, S
ANGELOVA, B
SCHMAUDER, H.-P
AVRAMOVA, T
BOYADJIEVA, L
description The applicability of a recently published modification of the chemostat, named "titrostat", for microbial continuous-flow purification of toluene-contaminated air is discussed. This article describes the operative range and the toluene elimination efficiency of a 2-l titrostat running with a mixed bacterial culture dominated by two Acinetobacter species: A. calcoaceticus and A. radioresistens. The study focuses on the kinetics and stoichiometry of the process. Special attention is paid to the peculiarities of toluene as an unconventional growth substrate having high carbon and energy content. Removal productivity as high as 2.24 g l(-1) h(-1) with 99.9% elimination efficiency was observed at air flow rate 60 l h(-1), temperature 32 degrees C, pH 6.2, toluene concentration in the inlet air 37.4 mg l(-1) and titrant solution containing NH3 at 1.87 g l(-1). The maximum biomass yield from assimilated toluene, Ysm=0.880+/-0.011, and a rate of substrate expenditures for cell maintenance, ms=0.022+/-0.002 h(-1), were estimated.
doi_str_mv 10.1007/s00253-004-1621-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18043677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18043677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-5e112cafaacf0a01f55041ca1dcc5eff18057448f0585f70f5adb376962df37c3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQQEVIaLZpf0AvxQTSm9IZfXqPJTRtIdBD2rOYlSWiYFsbySbk39dmFxpymsubx8xj7BPCNQLYrxVAaMkBFEcjkNsTtkElBQeD6pRtAK3mVm_bc_a-1kcAFK0x79g5aiFQCL1h9_dTTv4h5SFM5aXJsRmSL3mXqG98Hqc0znmuPPb5udnPJcXkaUp5XMkp93MYA185GtJIU-gaSuUDO4vU1_DxOC_Y39vvf25-8rvfP37dfLvjXgkxcR0QhadI5CMQYNQaFHrCznsdYsQWtFWqjaBbHS1ETd1OWrM1oovSennBvhy8-5Kf5lAnN6TqQ9_TGJaj3SJQ0li7gJdvwMc8l3G5zRmhWolbjQuEB2h5v9YSotuXNFB5cQhuze0Oud2S26253Sr-fBTPuyF0_zeOfRfg6ghQ9dTHQqNP9RW3bbUBKf8BK0GIpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>624831951</pqid></control><display><type>article</type><title>Stoichiometry of microbial continuous-flow purification of toluene-contaminated air</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>MUTAFOV, S ; ANGELOVA, B ; SCHMAUDER, H.-P ; AVRAMOVA, T ; BOYADJIEVA, L</creator><creatorcontrib>MUTAFOV, S ; ANGELOVA, B ; SCHMAUDER, H.-P ; AVRAMOVA, T ; BOYADJIEVA, L</creatorcontrib><description>The applicability of a recently published modification of the chemostat, named "titrostat", for microbial continuous-flow purification of toluene-contaminated air is discussed. This article describes the operative range and the toluene elimination efficiency of a 2-l titrostat running with a mixed bacterial culture dominated by two Acinetobacter species: A. calcoaceticus and A. radioresistens. The study focuses on the kinetics and stoichiometry of the process. Special attention is paid to the peculiarities of toluene as an unconventional growth substrate having high carbon and energy content. Removal productivity as high as 2.24 g l(-1) h(-1) with 99.9% elimination efficiency was observed at air flow rate 60 l h(-1), temperature 32 degrees C, pH 6.2, toluene concentration in the inlet air 37.4 mg l(-1) and titrant solution containing NH3 at 1.87 g l(-1). The maximum biomass yield from assimilated toluene, Ysm=0.880+/-0.011, and a rate of substrate expenditures for cell maintenance, ms=0.022+/-0.002 h(-1), were estimated.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-004-1621-7</identifier><identifier>PMID: 15221225</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Acinetobacter - growth &amp; development ; Acinetobacter - metabolism ; Acinetobacter calcoaceticus ; Acinetobacter radioresistens ; Air flow ; Air Pollutants - chemistry ; Air Pollutants - metabolism ; Biological and medical sciences ; Biological treatment of gaseous effluents ; Bioreactors - microbiology ; Biotechnology ; Environment and pollution ; Flow rates ; Fundamental and applied biological sciences. Psychology ; Industrial applications and implications. Economical aspects ; Kinetics ; Microbiological Techniques - instrumentation ; Microbiological Techniques - methods ; Toluene ; Toluene - analysis ; Toluene - metabolism</subject><ispartof>Applied microbiology and biotechnology, 2004-08, Vol.65 (2), p.228-234</ispartof><rights>2005 INIST-CNRS</rights><rights>Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-5e112cafaacf0a01f55041ca1dcc5eff18057448f0585f70f5adb376962df37c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15985603$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15221225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MUTAFOV, S</creatorcontrib><creatorcontrib>ANGELOVA, B</creatorcontrib><creatorcontrib>SCHMAUDER, H.-P</creatorcontrib><creatorcontrib>AVRAMOVA, T</creatorcontrib><creatorcontrib>BOYADJIEVA, L</creatorcontrib><title>Stoichiometry of microbial continuous-flow purification of toluene-contaminated air</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><description>The applicability of a recently published modification of the chemostat, named "titrostat", for microbial continuous-flow purification of toluene-contaminated air is discussed. This article describes the operative range and the toluene elimination efficiency of a 2-l titrostat running with a mixed bacterial culture dominated by two Acinetobacter species: A. calcoaceticus and A. radioresistens. The study focuses on the kinetics and stoichiometry of the process. Special attention is paid to the peculiarities of toluene as an unconventional growth substrate having high carbon and energy content. Removal productivity as high as 2.24 g l(-1) h(-1) with 99.9% elimination efficiency was observed at air flow rate 60 l h(-1), temperature 32 degrees C, pH 6.2, toluene concentration in the inlet air 37.4 mg l(-1) and titrant solution containing NH3 at 1.87 g l(-1). The maximum biomass yield from assimilated toluene, Ysm=0.880+/-0.011, and a rate of substrate expenditures for cell maintenance, ms=0.022+/-0.002 h(-1), were estimated.</description><subject>Acinetobacter - growth &amp; development</subject><subject>Acinetobacter - metabolism</subject><subject>Acinetobacter calcoaceticus</subject><subject>Acinetobacter radioresistens</subject><subject>Air flow</subject><subject>Air Pollutants - chemistry</subject><subject>Air Pollutants - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of gaseous effluents</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Environment and pollution</subject><subject>Flow rates</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Kinetics</subject><subject>Microbiological Techniques - instrumentation</subject><subject>Microbiological Techniques - methods</subject><subject>Toluene</subject><subject>Toluene - analysis</subject><subject>Toluene - metabolism</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkE1r3DAQQEVIaLZpf0AvxQTSm9IZfXqPJTRtIdBD2rOYlSWiYFsbySbk39dmFxpymsubx8xj7BPCNQLYrxVAaMkBFEcjkNsTtkElBQeD6pRtAK3mVm_bc_a-1kcAFK0x79g5aiFQCL1h9_dTTv4h5SFM5aXJsRmSL3mXqG98Hqc0znmuPPb5udnPJcXkaUp5XMkp93MYA185GtJIU-gaSuUDO4vU1_DxOC_Y39vvf25-8rvfP37dfLvjXgkxcR0QhadI5CMQYNQaFHrCznsdYsQWtFWqjaBbHS1ETd1OWrM1oovSennBvhy8-5Kf5lAnN6TqQ9_TGJaj3SJQ0li7gJdvwMc8l3G5zRmhWolbjQuEB2h5v9YSotuXNFB5cQhuze0Oud2S26253Sr-fBTPuyF0_zeOfRfg6ghQ9dTHQqNP9RW3bbUBKf8BK0GIpw</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>MUTAFOV, S</creator><creator>ANGELOVA, B</creator><creator>SCHMAUDER, H.-P</creator><creator>AVRAMOVA, T</creator><creator>BOYADJIEVA, L</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20040801</creationdate><title>Stoichiometry of microbial continuous-flow purification of toluene-contaminated air</title><author>MUTAFOV, S ; ANGELOVA, B ; SCHMAUDER, H.-P ; AVRAMOVA, T ; BOYADJIEVA, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-5e112cafaacf0a01f55041ca1dcc5eff18057448f0585f70f5adb376962df37c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acinetobacter - growth &amp; development</topic><topic>Acinetobacter - metabolism</topic><topic>Acinetobacter calcoaceticus</topic><topic>Acinetobacter radioresistens</topic><topic>Air flow</topic><topic>Air Pollutants - chemistry</topic><topic>Air Pollutants - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of gaseous effluents</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Environment and pollution</topic><topic>Flow rates</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Kinetics</topic><topic>Microbiological Techniques - instrumentation</topic><topic>Microbiological Techniques - methods</topic><topic>Toluene</topic><topic>Toluene - analysis</topic><topic>Toluene - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MUTAFOV, S</creatorcontrib><creatorcontrib>ANGELOVA, B</creatorcontrib><creatorcontrib>SCHMAUDER, H.-P</creatorcontrib><creatorcontrib>AVRAMOVA, T</creatorcontrib><creatorcontrib>BOYADJIEVA, L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MUTAFOV, S</au><au>ANGELOVA, B</au><au>SCHMAUDER, H.-P</au><au>AVRAMOVA, T</au><au>BOYADJIEVA, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stoichiometry of microbial continuous-flow purification of toluene-contaminated air</atitle><jtitle>Applied microbiology and biotechnology</jtitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>65</volume><issue>2</issue><spage>228</spage><epage>234</epage><pages>228-234</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>The applicability of a recently published modification of the chemostat, named "titrostat", for microbial continuous-flow purification of toluene-contaminated air is discussed. This article describes the operative range and the toluene elimination efficiency of a 2-l titrostat running with a mixed bacterial culture dominated by two Acinetobacter species: A. calcoaceticus and A. radioresistens. The study focuses on the kinetics and stoichiometry of the process. Special attention is paid to the peculiarities of toluene as an unconventional growth substrate having high carbon and energy content. Removal productivity as high as 2.24 g l(-1) h(-1) with 99.9% elimination efficiency was observed at air flow rate 60 l h(-1), temperature 32 degrees C, pH 6.2, toluene concentration in the inlet air 37.4 mg l(-1) and titrant solution containing NH3 at 1.87 g l(-1). The maximum biomass yield from assimilated toluene, Ysm=0.880+/-0.011, and a rate of substrate expenditures for cell maintenance, ms=0.022+/-0.002 h(-1), were estimated.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>15221225</pmid><doi>10.1007/s00253-004-1621-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2004-08, Vol.65 (2), p.228-234
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_18043677
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acinetobacter - growth & development
Acinetobacter - metabolism
Acinetobacter calcoaceticus
Acinetobacter radioresistens
Air flow
Air Pollutants - chemistry
Air Pollutants - metabolism
Biological and medical sciences
Biological treatment of gaseous effluents
Bioreactors - microbiology
Biotechnology
Environment and pollution
Flow rates
Fundamental and applied biological sciences. Psychology
Industrial applications and implications. Economical aspects
Kinetics
Microbiological Techniques - instrumentation
Microbiological Techniques - methods
Toluene
Toluene - analysis
Toluene - metabolism
title Stoichiometry of microbial continuous-flow purification of toluene-contaminated air
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stoichiometry%20of%20microbial%20continuous-flow%20purification%20of%20toluene-contaminated%20air&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=MUTAFOV,%20S&rft.date=2004-08-01&rft.volume=65&rft.issue=2&rft.spage=228&rft.epage=234&rft.pages=228-234&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-004-1621-7&rft_dat=%3Cproquest_cross%3E18043677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=624831951&rft_id=info:pmid/15221225&rfr_iscdi=true